
www.manaraa.com

Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2004

Distributed decision-making in electric power
system transmission maintenance scheduling using
Multi-Agent Systems (MAS)
Zhong Zhang
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Electrical and Electronics Commons, and the Oil, Gas, and Energy Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Zhang, Zhong, "Distributed decision-making in electric power system transmission maintenance scheduling using Multi-Agent
Systems (MAS) " (2004). Retrospective Theses and Dissertations. 1134.
https://lib.dr.iastate.edu/rtd/1134

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F1134&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F1134&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F1134&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F1134&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F1134&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F1134&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=lib.dr.iastate.edu%2Frtd%2F1134&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/171?utm_source=lib.dr.iastate.edu%2Frtd%2F1134&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/1134?utm_source=lib.dr.iastate.edu%2Frtd%2F1134&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu


www.manaraa.com

Distributed decision-making In electric power system transmission maintenance 

scheduling using Multi-Agent Systems (MAS) 

by 

Zhong Zhang 

A dissertation submitted to the graduate faculty 

in partial fulfillment of the requirements for the degree of 

DOCTOR OF PHILOSOPHY 

Major: Electrical Engineering 

Program of Study Committee: 

James D. McCalley, Major Professor 

S. S. (Mani) Venkata 

Vasant Honavar 

Manimaran Govindarasu 

Glenn R. Luccke 

Iowa State University 

Ames, Iowa 

2004 

Copyright © Zhong Zhang, 2004. All rights reserved. 



www.manaraa.com

UMI Number: 3145695 

INFORMATION TO USERS 

The quality of this reproduction is dependent upon the quality of the copy 

submitted. Broken or indistinct print, colored or poor quality illustrations and 

photographs, print bleed-through, substandard margins, and improper 

alignment can adversely affect reproduction. 

In the unlikely event that the author did not send a complete manuscript 

and there are missing pages, these will be noted. Also, if unauthorized 

copyright material had to be removed, a note will indicate the deletion. 

UMI 
UMI Microform 3145695 

Copyright 2004 by ProQuest Information and Learning Company. 

All rights reserved. This microform edition is protected against 

unauthorized copying under Title 17, United States Code. 

ProQuest Information and Learning Company 
300 North Zeeb Road 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346 



www.manaraa.com

ii 

Graduate College 
Iowa State University 

This is to certify that the doctoral dissertation of 

Zhong Zhang 

has met the dissertation requirements of Iowa State University 

Major Professor 

For the Major Program 

Signature was redacted for privacy.

Signature was redacted for privacy.



www.manaraa.com

iii 

TABLE OF CONTENTS 

IJIST^ OlH' I^ICjUS^JElS eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee»eeeeeeeeeBeeeeeeeeeeeeeee»eeeeeeeeeeeeeeeeeeeeeeeee»e»eeeeeeee»eeeeeeeeeaeee VI 

T B 1 OJb TV^Bl-vtCS Vil 

1 i^^n^ODu c i 'i »•••«••• i 

1.1 Characteristics of Equipment Condition Information 1 

1.2 Diversity of Decision Makers in Deregulated Electric Power System 3 

1.3 Interdependence of Economic and Security 3 

1.4 Contributions of This Research Work 4 

1.5 Organization of This Thesis 5 

2 LITERATURE REVIEW 7 

2.1 Transmission System Maintenance Strategies 7 

2.1.1 Breakdown Maintenance 7 

2.1.2 Preventive Maintenance 8 

2.1.3 Predictive Maintenance 8 

2.1.4 Reliability-Centered Maintenance 8 

2.1.5 Condition-Based Maintenance 9 

2.2 Current Efforts Regarding Standardization of Communications and Information 

Repository in Power Industry 10 

2.2.1 Utility Communications Architecture 11 

2.2.2 Common Information Model 12 

2.2.3 Data Integration Needs for Asset Management 14 

2.3 An Alternative and Unifying Approach 14 

2.3.1 What is an Agent? 15 

2.3.2 Attributes of Intelligent Software Agent 18 

2.3.3 Multiagent Systems 20 

2.4 Applications of Agent-based Systems to Electric Power Systems 21 

2.4.1 Power Market Modeling and Simulation 22 
2.4.2 Transmission Planning 22 

2.4.3 Power Systems Operations 23 
2.4.4 Strategic Power Infrastructure Defense 23 

2.5 Summary 24 

3 TRANSMISSION SYSTEM MAINTENANCE OPTIMIZATION 25 



www.manaraa.com

iv 

3.1 Introduction 25 

3.2 Risk-based Transmission Maintenance Optimization 26 

3.3 Various Transformer Condition Monitoring Techniques 30 

3.3.1 Operating Condition Monitoring 30 

3.3.2 Temperature Monitoring 31 
3.3.3 Dissolved Gas-in-oil Analysis.. 31 

3.3.4 Moisture-in-oil Monitoring 32 

3.3.5 Partial Discharge Monitoring 32 
3.3.6 Power Transformer Condition Data 33 

3.4 Typical Transformer Failure Modes 34 

3.4.1 General Degradation 34 

3.4.2 Thermal Related Failures 34 
3.4.3 Dielectric Related Failures 35 

3.4.4 Mechanical Related Failures 35 

3.5 Instantaneous Equipment Failure Probability Estimation 36 

3.5.1 Hazard Function Models 36 

3.5.2 Markov Model 43 

3.5.3 Bayesian Approach 51 

3.5.4 A Comparison between these Methods 56 

3.6 Summary 56 

4 MULTIAGENT NEGOTIATION MODELS FOR POWER SYSTEM 
APPLICATIONS 58 

4.1 Introduction 58 

4.2 Negotiation Theory and Agents: a Review 61 

4.2.1 Basics of Negotiation Theory 61 

4.2.2 Computer-based Negotiation Systems 67 

4.3 Multiagent Negotiation Models 70 

4.3.1 Negotiation Model for Individual Rationality 71 

4.3.2 Embedding Agents with Social Rationality 72 

4.4 Negotiation Convergence and Scalability 75 

4.5 Comparison between Agent-based Auction and Negotiation 77 

4.6 Summary 78 

5 A MAS FRAMEWORK OF INTEGRATED CONDITION MONITORING AND 
MAINTENANCE SCHEDULING SYSTEM- 79 

5.1 Introduction 79 

5.2 Multiagent System Methodology 80 



www.manaraa.com

V 

5.2.1 Analysis: Environment and Tasks 80 
5.2.2 Design: Roles, Interactions, and Organizations 81 

5.2.3 Implementation: Architecture 81 

5.2.4 Deployment 82 

5.3 Multiagent System Implementation 82 

5.4 Illustrative System Security-Economy Decision-makings 86 

5.5 Multiagent-based Transformer Condition Monitoring and Maintenance System 91 

5.5.1 Model of Communication Agent 91 

5.5.2 Model of Diagnostic Agent 92 

5.5.3 Model of Maintenance Agent 93 

5.6 System-wide Maintenance Scheduling through MAS Negotiations 94 

5.7 System Maintenance Scheduling Simulations through Multiagent Negotiation 95 

5.8 Summary 103 

6 CONCLUSIONS AND FUTURE WORK » 104 

6.1 Conclusions 104 

6.2 Contributions and Significance of This Work 105 

6.3 Future Work 110 

Appendix A. Transformer Failure Modes and Maintenance Activities 112 

Appendix B. Transformer Oil Test Results 113 

REFERENCE 114 

ACKNOWLEDGEMENTS 130 



www.manaraa.com

vi 

LIST OF FIGURES 

Figure 2-1: Software Agent Overview 17 

Figure 2-2: Properties of Intelligent Agent 18 

Figure 2-3: Multiagent Systems Overview 20 

Figure 3-1: Relationships between h(t), f(t), and R(t) 38 

Figure 3-2: Wei bull Distributions 39 

Figure 3-3: Bathtub Curve 41 

Figure 3-4: Hazard Function Model 1 42 

Figure 3-5: Hazard Function Model 2 43 

Figure 3-6: Markov Model 44 

Figure 3-7: Transformer Instantaneous Failure Probabilities 51 

Figure 3-8: Bayesian Analysis of Equipment Failure Rate 53 

Figure 3-9: Expectation of Shape Parameter 55 

Figure 3-10: Transformer Failure Probability Estimations 55 

Figure 5-1: MAS Design Methodology 81 

Figure 5-2: FSM of Contract Net Protocol 85 

Figure 5-3: Negotiation Protocol 86 

Figure 5-4: Negotiation between ISO-Agent and Transco-Agent 87 

Figure 5-5: Modified RTS-96 System 88 

Figure 5-6: Negotiation Between ISO and Load Agents 90 

Figure 5-7: Multiagent based Condition Monitoring and Maintenance System (MCMMS). 91 

Figure 5-8: Model of Communication Agent 92 

Figure 5-9: Model of Diagnostic Agent 93 

Figure 5-10: Model of Maintenance Agents 93 

Figure 5-11: Maintenance Scheduling through MAS Negotiations 95 

Figure 5-12: Maintenance Scheduling Simulation through Negotiation 97 



www.manaraa.com

vii 

LIST OF TABLES 

Table 3-1: Key Gas Interpretation 32 

Table 3-2: Determine the Transformer Condition based on DGA 45 

Table 3-3: Transition Rates of 115 KV Power Transformer 49 

Table 3-4: Power Transformer Instantaneous Failure Probability Calculation 50 

Table 3-5: A Comparison between These Methods 56 

Table 5-1: Transmission Maintenance Schedules for Three Sub-systems 96 

Table 5-2: Transformer Maintenance Scheduling Simulation 1 98 

Table 5-3: Transformer Maintenance Scheduling Simulation 2 99 

Table 5-4: Transformer Maintenance Scheduling Simulation 3 100 

Table 5-5: Transformer Maintenance Scheduling Simulation 4 101 

Table 5-6: A comparison between the Maintenance Simulations 102 



www.manaraa.com

1 

1 INTRODUCTION 

The electric power utilities around the world have been undergoing rapid changes in 

the past decades. The new deregulated environment forces individual utilities to reduce 

operating costs while maintaining the overall system reliability. One of the major costs of an 

electric utility is transmission maintenance. Some utilities are working proactively to address 

this issue by implementing efficient maintenance programs, such as condition-based 

maintenance, which requires utilization of a large volume of equipment condition data. In 

addition, the functional disaggregation of the once vertically integrated utility, together with 

the erosion of cooperative relations between major players, has resulted in authority 

fragmentation of a variety of decision-making problems, e.g., transmission maintenance 

scheduling, which now requires the coordination between various competing and 

autonomous entities across the entire system. It is evident that a good information integration 

and coordination mechanism among the self-interested entities is essential to achieving an 

optimal trade-off between the cost of maintenance and the system service reliability. 

7.7 CAaracfer/sf/cs of Equipment Cond/f/on /nformaf/on 

Sufficient equipment information is necessary to evaluate the operating conditions of 

the equipment and thus an effective maintenance program can be carried out. Over the past 

decades, the technologies employed for electrical equipment monitoring have been evolving 

from traditional periodic on-site examination and laboratory analysis to continuous, on-line 

monitoring. Recent technological advancements have made various sensors integrated with 

substation intelligent electronic devices (IEDs) available to monitor different parameters 

essential to the health of electrical equipment in operation. These monitoring systems 

monitor some critical equipment parameters continuously, in "real-time". Usually sampling 

is from several minutes to seconds. Therefore, a major aspect of these monitoring 
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technologies has been the accumulation of tremendous amount of equipment data at the Geld. 

Due to the physical and evolutionary nature of the electric power systems, these huge amount 

of equipment monitoring data contained in electric power systems, have some unique 

characteristics as following: 

(a) SpafzaZ The power system is inherently spread across a wide 

geographical area. Intelligent electronic devices (IEDs) spread throughout the grid are rich 

repositories of equipment data, like currents, voltages, power factors, settings and various 

temperatures. Retrieving these data is a highly communication intensive activity, and it is 

also encumbered by the heterogeneity of the devices as well as associated software systems. 

(b) Heterogeneity: Prior to the trend of deregulation in the power industry, rapid 

advances within the telecommunications sector together with the power sector's ever 

increasing need for information services have led utilities to use heterogeneous 

communication services, grouping together equipment from various manufacturers and 

technologies. The heterogeneity can involve one or more of the following facets: platforms, 

user interfaces, object definitions and communication protocols [Apostolov, 2001]. 

(c) Time-Variance: Electrical equipment's inevitable aging and gradually 

deterioration in operation, coupled with the inherent dynamic nature of the power system has 

made equipment condition information highly time-variant. 

(d) Proprietary Information: Equipment data sources of interest are usually 

autonomously owned and operated. The information required for various analyses may need 

to be accessed from proprietary databases. 

Currently, coordination of those highly dispersed equipment condition information 

requires significant human intervention since it is not easily accessed or generally available, 

because of information processing limitations, temporal barriers, tremendous volumes and 

proprietary constraints. The complexities of doing so make manual coordination 

incompatible with the maintenance need of today's transmission systems. Thus, in order to 

obtain and better utilize this useful information under such complex, data-intensive and 
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stressed scenarios, a sophisticated new paradigm is necessitated for comprehensive 

information accessing and integration in support of utilities' maintenance decision-makings. 

7.2 D/yers/fy of Oec/s/on Makers /n Oeregu/afed E/ecfr/c Power 

System 

In a vertically integrated system of the pre-deregulation era, decision-making 

authorities were strictly centralized, i.e., utilities centrally determined the need for power, the 

most economical choice to produce and deliver it, and how to maintain the system to ensure 

its reliability. Today, deregulation has created a more complex operation and maintenance 

(O&M) environment by creating new entities and defining new rights and responsibilities for 

these entities. The entities in such power systems can include power exchanges, utilities, 

ISOs, distribution companies, regulators, reliability councils, transmission owners, 

generation owners, scheduling coordinators and large industrial consumers. The functional 

disaggregation of the once vertically integrated utility, together with the erosion of 

cooperative relations between major players, has resulted in authority fragmentation of a 

variety of decision-making problems, such as transmission maintenance scheduling, which 

now requires the coordination between various competing and autonomous entities across the 

entire system. 

7.3 interdependence of Econom/c and Secur/fy 

Reliability and economy are among the most important considerations in restructured 

power systems. The objective of competitive energy markets to obtain the highest overall 

system efficiencies can be viewed as a tradeoff problem between concerns for high market 

(economic) efficiency and the reliability of the system. In other words, it is the system 

reliability level that determines utility's flexibility in responding to the economic imperatives 

of the electric energy market. An optimized maintenance program can dramatically improve 
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system reliability in a cost-effective fashion. Reliability can be defined as the probability of a 

device or system performing its function adequately, for the period of time intended, under 

the operating condition intended [Endrenyi. 1978]. In order to develop an effective 

maintenance program and quantitatively evaluate the result of the maintenance activities in 

terms of system reliability enhancement, a prerequisite is to build models for estimating 

electric equipment time-dependent failure probability based on available equipment 

condition information. 

7.4 Confr/buf/ons of TTws Research Work 

In transmission maintenance scheduling, given the competing nature of involved 

entities, dynamic and proprietary nature of equipment condition information available to 

these entities, there is a compelling need to look beyond the traditional centralized 

approaches. This work offers an alternative to traditional centralized maintenance practices 

by developing a multiagent negotiation-based framework for distributed decision support 

among various independent utilities. The most significant contributions of this work are 

summarized in what follows. 

• An innovative risk-based transmission maintenance optimization procedure is 

introduced. This framework provides the ability to select and schedule maintenance tasks so 

as to utilize the available financial and human resources to optimize the risk-reduction 

achieved from them within a given budget cycle. Several models for linking condition 

monitoring information to the equipment's instantaneous failure probability are developed, 

which enable quantitative evaluation of the effectiveness of maintenance activities in terms 

of system cumulative risk reduction. Methodologies of statistical processing, equipment 

deterioration evaluation and time-dependent failure probability calculation are also described. 

- A novel framework capable of facilitating distributed decision-making through 

multiagent negotiation is developed. A multiagent negotiation model is developed and 
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illustrated that accounts for uncertainty and enables social rationality. Some issues of 

multiagent negotiation convergence and scalability are discussed. The relationships between 

agent-based negotiation and auction systems are also identified. 

• A four-step MAS design methodology for constructing multiagent systems for 

power system applications is presented. A generic multiagent negotiation system, capable of 

inter-agent communication and distributed decision support through inter-agent negotiations, 

is implemented. 

• A multiagent system framework for facilitating the automated integration of 

condition monitoring information and maintenance scheduling for power transformers is 

developed. Simulations of multiagent negotiation-based maintenance scheduling among 

several independent utilities are provided. It is shown to be a viable alternative solution 

paradigm to the traditional centralized optimization approach in today's deregulated 

environment. This multiagent system framework not only facilitates the decision-making 

among competing power system entities, but also provides a tool to use in studying 

competitive industry relative to monopolistic industry. 

f .5 Ofgamzaf/on of 77;/s Tibes/s 

The rest of this dissertation is organized as follows: 

Chapter 2 presents a literature review related to this work. Different power system 

maintenance practices are summarized. Current industry efforts regarding standardization of 

communication protocols and information integration are identified. Then concepts of 

intelligent software agent and multiagent systems as well as their attractive attributes are 

introduced. Some MAS applications in electric power systems are also reviewed. 

Chapter 3 first presents a risk-based transmission maintenance optimization 

procedure. We use power transformer as an example to illustrate our work. Different power 

transformer condition monitoring techniques as well as available condition information are 
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described. Various transformer failure modes are then identified. Based on condition 

monitoring information, different models of estimating equipment instantaneous failure 

probability are developed and illustrated. The estimation of equipment instantaneous failure 

probability enables the effective utilization of equipment condition information in related 

maintenance decisions, in order to enhance system reliability by performing appropriate 

maintenance activities subjected to various constraints. 

Chapter 4 describes a distributed decision support framework through multiagent 

negotiation. The negotiation theory is extensively reviewed. A simple and easily 

implemented value function-based negotiation model is described. A utility function-based 

multiagent negotiation model, which accounts for uncertainty and enables social rationality, 

is developed. Some issues of multiagent negotiation convergence and scalability are 

discussed. The relationship between agent-based negotiations and auction systems is also 

identified. 

Chapter 5 implements and illustrates a multiagent system framework for displacing 

centralized optimization with negotiated decision-making for maintenance scheduling. First, 

a four-step MAS design methodology for constructing multiagent systems for power system 

applications is described. Then the implementation of a multiagent negotiation system 

(MANS) is described. Based on this generic multiagent system platform, we further develop 

a multiagent framework for facilitating the automated integration of condition monitoring 

information and maintenance scheduling for power transformers. Simulations of multiagent 

negotiation-based maintenance scheduling among several independent utilities are also 

provided. 

Chapter 6 presents conclusions, contributions and future work. 
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2 LITERATURE REVIEW 

In this chapter, literature related to this work is reviewed. First, the traditional and 

state-of-the-art transmission system maintenance strategies are briefly described. Then 

current power industry efforts regarding standardization of communication protocols and 

information integration are outlined. The concepts of software agent and multiagent systems 

(MAS) technology, along with the characteristics of intelligent agent and multiagent systems 

are introduced. Finally, some MAS applications in electric power systems are also reviewed. 

2.7 Transm/ss/on Sysfem Ma/nfenance Sfrafeg/es 

According to [IEEE Std 902-1998], electrical equipment maintenance is the act of 

preserving or keeping in existence those conditions that are necessary in order for electrical 

equipment to operate as it was originally intended. Thus, the prime objective of maintenance 

is to keep the equipment in good working order and to maximize its lifetime productivity. 

There are different kinds of transmission maintenance strategies, which have been practiced 

in the industry. Here, the most frequently preformed maintenance strategies are reviewed 

[IEEE Std 902-1998; Harker, 1998; Okrasa, 1997; Endrenyi. 2001; Shahidehpour, 2000; Li, 

2004]. 

2.1.1 Breakdown Maintenance 

Those repair actions that are conducted after a failure in order to restore equipment or 

systems to an operational condition. This may also be referred to as corrective maintenance 

or reactive maintenance. Equipment is neither serviced on a regular scheduled basis, nor is it 

tested to determine its condition. With this approach, equipment is repaired or replaced only 

after a failure occurs. This is the most widely used approach in the past decades. 
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2.1.2 Preventive Maintenance 

Preventive Maintenance is a program of routine equipment inspections, maintenance 

tasks and repairs that are scheduled to ensure that degradation of equipment is minimized. 

This is the maintenance that is carried out at predetermined intervals to reduce the likelihood 

of an item of equipment falling in service. In practice, the maintenance intervals are usually 

selected on the basis of long-time experience. A probabilistic model used to determine the 

mean time to preventive maintenance was described in [Sim, 1988]. A well-designed 

preventive maintenance program may slightly over-maintain equipment because the 

scheduling is designed for the worst case operating conditions. The overall objective is to 

prevent operating problems or failures, and ensure reliable operation of a facility. This 

approach is also frequently used in today's industry. 

2.1.3 Predictive Maintenance 

Predictive maintenance is the technique of regularly monitoring selected parameters 

of equipment operation to detect and correct a potential problem before it causes a failure. 

This is done by trending measured parameters, which allows a comparison of current 

parameters to historical data. From this comparison, qualified judgments about the need for 

corrective action can be made. This approach ensures that the right maintenance activities are 

performed at the right time. 

2.1.4 Reliability-Centered Maintenance 

Reliability-Centered Maintenance (RCM) is a systematic methodology that 

establishes initial preventive maintenance requirements or optimizes existing preventive 

maintenance requirements for equipment based upon the consequences of equipment failure. 

The failure consequences are determined by the application of the equipment in an operating 

system. In an RCM approach, various alternative maintenance policies can be compared and 

the one most cost-effective for sustaining equipment reliability selected. The most important 
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principle of RCM is to enhance or preserve the reliability level of the entire system through 

maintenance. Some general ideals of RCM for transmission system are presented in [Beehler, 

1997]. However, it did not present any mathematical method to quantify transmission system 

reliability. A time-shift-based Monte Carlo simulation method was described in [Li, 2004], 

which quantifies the impact assessment of the planned outage on whole transmission system 

reliability. And reference [Shahidehpour, 2000] gives very detailed mathematical formations 

for generation and transmission maintenance scheduling problems considering the costs as 

optimization objectives while satisfying various constraints including system reliability. 

2.1.5 Condition-Based Maintenance 

Condition-Based Maintenance (CBM): Maintenance activities are carried out only 

when the condition-monitoring information of that equipment indicates a need. Obviously, 

this approach is heavily based on the assessment of equipment operating condition, where 

decisions with regard to the time and amount of maintenance are dependent on the actual 

condition (stage of deterioration) of the equipment. However, it may take a long time before 

enough equipment condition data are gathered for necessary analysis. Besides, this approach 

also requires rich field experience from maintenance personnel. 

In the past, due to the lack of sufficient equipment condition information, most 

utilities employed the philosophy of age replacement or breakdown maintenance, i.e., a 

replacement is performed at a certain age or when the equipment actually fails, whenever 

comes first. It is easy to manage, however, now it is becoming more and more unacceptable, 

because of the possible high consequences associated with equipment failures in today's 

stressed network. Thus a more proactive attitude is taken by utilities to perform maintenance 

activities at a predetermined interval, such as one year regardless of actual operating 

condition of the equipment, i.e., preventive maintenance strategy. Obviously, this is not an 

optimal maintenance strategy in today's business environment, because there always be the 

situation that the equipment is in good condition and indeed needs no care, but actually 
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maintenance is performed according to predetermined schedule. So there is a room for 

costing saving by reducing the frequency of maintenance if possible. Fortunately, with the 

development of microcomputer and sensor technologies, various condition-monitoring 

techniques are now available for monitoring different key parameters of transmission 

equipment. This enables utilities to track the operating conditions of their equipment and 

detect any imminent failures. Thus utilities can perform some more efficient maintenance 

programs, such as reliability-centered maintenance and condition-based maintenance, to 

reduce their maintenance costs as well as sustain their equipment reliability. 

As just mentioned above, in order to carry out more efficient maintenance strategies, 

such as RCM, it requires a large amount of equipment information to be collected and 

analyzed in a timely fashion. However, handling these condition data is extremely 

challenging due to its enormous size, high heterogeneity and physical distribution. In the next 

section, we will review some industry efforts, which are trying to deal with problems of this 

nature. 

2.2 Currenf E/forfs Regarding SfandardAzaf/on of Commun/caf/ons 

and /n/drmaf/on Repos/fory /n Power /ndusfry 

Since the late 1980s, the emerging presence of computer and digital technologies has 

brought much greater efficiency and operational potential to the electric utilities. However, as 

both hardware and software vendors design systems suited to their own specific applications, 

the number of data storage platforms/formats and corresponding access/retrieval/interface 

methods have burgeoned. This has resulted in numerous and heterogeneous "information 

islands" at different levels throughout the power system, which are labor-intensive to identify, 

access, and integrate for a given purpose. In response, the power community has begun 

efforts to standardize communication protocols and information/data storage. 
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This section is organized as follows. First, current power industry efforts regarding 

standardization of communication protocols and information/data integration, e.g., Utility 

Communication Architecture (UCA), Common Information Model (CIM) are briefly 

introduced. Then some recent power system asset management tools are also reviewed. 

2.2.1 Utility Communications Architecture 

The Utility Communications Architecture (UCA) [EPRI, 1998a; EPRI, 1998b; CAP 

Tutorial 2001; UCA Forum] was developed under the sponsorship of the Electric Power 

Research Institute (EPRI) through a process of broad industry involvement since 1988. The 

objective has been to allow for seamless integration across the utility enterprise using 

off-the-shelf international standards to reduce costs. UCA is an architecture that provides 

communications solutions from simple devices to control centers all based upon compatible, 

standard and interoperable communications protocols and device object models. 

The UCA Version 1.0 specification was issued in December 1991. While this 

specification supplied a great deal of functionality, industry adoption was limited, due to the 

lack of detailed specification of how the protocols would actually be used by applications. 

For example, the Manufacturing Message Specification (MMS) ISO/1EC 9506 protocol was 

specified for real time data exchange at many levels within a utility, but specific mappings to 

MMS for exchanging power system data and schedules or for communicating directly with 

substation or distribution feeder was lacking, resulting in continuing interoperability 

problems. Thus EPRI began the MMS Forum UCA 2.0 (now referred to as the UCA Forum) 

to define how MMS should be used in a utility environment. This definition formed much of 

the basis of UCA 2.0. 

UCA 2.0 was concerned with defining the methods and language that would allow 

devices from different vendors to understand each other, or intemperate, in an electric utility 

substation. The UCA Version 2.0 incorporates a family of basic communications protocols to 

meet the requirements of a wide range of utility environments. The UCA protocols are 
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organized according to the Open iSyafgnt? /nfercowMcfion (OSI) reference model. The UCA 

Version 2.0 includes profiles employing protocols from both the OSI and TCP/IP families of 

protocols. 

The Inter-Control Center Communications Protocol (ICCP, also known as Telecontrol 

Application Service Element 2, TASE.2) defines a standardized use of MMS in UCA Version 

2.0 compliant networks for real-time exchange of data within and between control centers, 

power plants, and SCADA masters. The Generic Object Models for Substation and Feeder 

Equipment (GOMSFE) contains detailed object models of common field devices, including 

definitions of their associated algorithms and communications behavior visible through the 

communication system. The device models developed within the UCA 2.0 effort make use of 

a common set of services to describe the communications behavior of the devices. A standard 

mapping of these services onto the UCA application layer protocol (MMS), when used in 

conjunction with the device models, completely specifies the detailed interoperable structure 

for utility field devices. The services and mapping to MMS are defined in UCA Common 

Application Service Models (CASM). CASM is the document that illustrates the step-by-step 

processes that must be followed for a communications service to be performed within UCA. 

2.2.2 Common Information Model 

Electric utility organizations have long needed to exchange system information with 

one another in order to construct simulation environments for power system economics and 

security analysis. Even though most Energy Management Systems (EMS) and Distribution 

Management Systems (DMS) are now supplied with standard operating systems on standard 

computer platform hardware, these systems are still built on proprietary databases. The 

consequences of this led to boundaries between different EMS systems and locked the user 

out of the environment. 

Between 1993-1994, the Ekcfnc Power jfasearc/z Z/zjfzfwfe (EPRI) Working Group 

on ConfroZ Center AppZzcofion Wer/àces (CCAPI) has as its objectives to publish a set of 
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guidelines for application interfaces, to develop associated support tools, and to promote the 

use of open software engineering approaches in EMS. The Common Information Model 

(CIM) [Lee, 1999; Podmore, 1999] is the foundation of the overall CCAPI framework. The 

CIM provides a standard for representing power system objects along with their attributes 

and relationships. The CIM facilitates the integration of EMS applications developed by 

different vendors; entire EMS systems developed by different vendors; or EMS systems and 

other systems concerned with different aspects of power system operations, such as 

generation or distribution management. 

The CIM is partitioned into a number of submodels, or packages, for convenience: a 

Wires Model, SCADA Model, Load Model, Energy Scheduling Model and a Generation 

Model. The Wires Model represents physical equipment and the definition of how they are 

connected to each other. It includes information for transmission, subtransmission, substation, 

and distribution feeder equipment. This information is used by network status, state 

estimation, power flow, contingency analysis, and optimal power flow applications. The 

SCADA Model describes measurements, PTs, CTs, RTUs, scan blocks, and communication 

circuits. It supports operator control of equipment, telemetered data acquisition and alarming. 

The Load Model provides models for all load levels from customers to feeders to load areas 

to the system level. The load is modeled by time-varying curves that represent effects of 

different seasons and day-types. The voltage and frequency dependence of loads can also be 

modeled. The Energy Scheduling Model includes objects for schedules, companies, control 

areas, and tie lines. It handles scheduling transactions for energy, generation capacity, 

transmission, and ancillary services. The Generation Model includes objects for generators, 

prime movers, fuels, and heat rate curves. This information is used by unit commitment, 

economic dispatch, automatic generation control and operator training simulator applications. 
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223 Data Integration Needs for Asset Management 

Recently there has been a great deal of investment in developing asset management 

tools. These tools may be classified by function. There are several which provide work-flow 

functions, work-order tracking, and data storage. Examples of these tools are MAXIMO 

[MAXIMO], CASCADE [CASCADE], and Asref-Senfry [ABB]. Typical data stored includes 

equipment data (nameplate), maintenance histories, and condition data. Some companies 

have several additional data repositories that house such information as outage schedules, 

operating histories (e.g., a process-information or Pi-historian), and equipment-specific 

condition data (e.g., dissolved gas analysis results, tap changer temperatures). Because of the 

number and diversity of the asset management data repositories, EPRI also has developed 

Maintenance Management Workstation (MMW) that acts as a database integrator providing a 

number of functionalities among which is the ability to bring data from multiple sources to a 

consolidated data set. 

2.3 4/femaf/ye and Un//y/ng approach 

UCA, CIM, and the asset management tools represent current efforts to facilitate 

communication needs and information processing needs within an information-intensive 

industry. An underlying, common theme is to standardize and centralize by defining and 

utilizing standard, interoperable communication protocols, by providing common 

object-models of power system data items, and by aggregating data into warehouses such as 

MMW. Therefore, the focus has been on aggregation of the data itself. 

Intelligent agent and multi-agent systems represent an alternative where the focus is 

on the processing rather than on the data, leaving the data both heterogeneous and distributed. 

With intelligent agents distributed in the entire network, software agents can perform 

proactive as well as reactive information/data processing, communicate and coordinate with 

each other to solve complex problems. We believe that MAS represents within a single 
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technology a unified solution to the problems that drive the need for UCA, CIM, and many of 

the various asset management tools. 

This section introduces the concepts of intelligent software agent and multiagent 

systems (MAS) technology used in this dissertation. 

23.1 What is an Agent? 

In the past decades, the term 'agent' has been widely used to refer to software system, 

which may have attributes of intelligence, autonomy, perception or acting on behalf of a user. 

However, there is no agreed and widely understood definition of exactly what an agent is or 

what properties it should have. Various definitions from different disciplines have been 

proposed for the term over the past years. Below we introduce a few representative 

descriptions of agency [Franklin, 1996]: 

Sankar Virdhagriswaran of Crystaliz, Inc., pointed out in an online white paper 

[Crystaliz], "The term agent is used to represent two orthogonal concepts. The first is the 

agent's ability for autonomous execution. The second is the agent's ability to perform domain 

oriented reasoning. " In this definition, autonomous execution is clearly central to agency. 

Russell and Norvig offered their definition [Russell, 1995], "An agent is anything that 

can be viewed as perceiving its environment through sensors and acting upon that 

environment through effectors. " The authors were interested in software agents embodying 

AI techniques. Clearly, this definition depends heavily on what we take as the environment, 

and on what sensing and acting mean. 

Pattie Maes, of MIT's Media Lab, is one of the pioneers of agent research. She has 

coined the following definition of the term [Maes, 1995]. "A# age/zf ia a conzpufafzo/zaZ 

ayafe/M f/w# zM&dbzfs a comp/ex, dynamic envzrofzmenf. 77# agenf con sense, o/wf ocf on, zfs 

environment Aaa a sef of goak or mofmzfzo/zj f/%zf zf frzes fo achieve fArowg/z f&ese 

acfzons." She adds a crucial element to her definition of an agent: agents must act 

autonomously so as to "realize a set of goals." Also, environments are restricted to being 
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complex and dynamic. 

Barbara Hayes-Roth, of Stanford's Knowledge Systems Laboratory, provided her 

concept of agent in [Hayes, 1995]: "Intelligent agents continuously perform three functions: 

perception of dynamic conditions in the environment; action to affect conditions in the 

gfiWro/imgfif; and reasoning to znfgfpref perceptions, sofve pm6Zems, draw in/èrences, and 

determine actions. " She insists that intelligent agents reason during the process of action 

selection. 

This definition of IBM Agent from IBM's Intelligent Agent Strategy white paper 

[IBM], "ZnteZ/igent agents are sq/hvare entities t&at carry owt some set of operations on 

6e/za/f of a wser or another program wit/z some degree of independence or autonomy, and in 

so doing, employ some knowledge or representation of the user's goals or desires. " It views 

an intelligent agent as acting for another, with authority granted by the other entity. 

FIPA (Foundation for Intelligent Physical Agents) uses a strawman definition of 

agent for all their specifications [FIPA]. They define an agent as: "an entity that resides in 

environments where it interprets "sensor" data that reflect events in the environment and 

executes "motor" commands that produce effects in the environment. An agent can be purely 

software or hardware. In the latter case a considerable amount of soft ware is needed to make 

the hardware an agent." 

Wooldridge and Jennings provides a weak notion of agency, which enjoys several 

properties, such as autonomy, social ability, reactivity, proactivity, [Wooldridge, 1995]. They 

said a simple way of conceptualizing an agent is thus as a kind of UNIX-like software 

process, that exhibits these above properties. This weak notion of agency has found currency 

with a surprisingly wide range of researchers. 

Based on the examination of a list of agent definitions, Franklin and Graesser pointed 

out some requirements constituting the essence of being an agent and proposed a 

mathematical style definition of an autonomous agent which is widely accepted [Franklin, 

1996]: "A/z awfonomows agent is a system situated wit/zin and a part of an environment t/zat 
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senses f&of environment and acts on if, over time, m pwrswif of its own agenda and so as fo 

effect what it senses in the future. " 

The reason why it is so difficult to define precisely 'what an agent is', is that various 

attributes associated with agency are of different importance in different domains. While 

there is no universally accepted exact definition of the term 'agent', we provide our agent 

definition that captures most of the agent desiderata based on [Lind, 2001]: "An agent is a 

software system that is situated in an environment and that operates in a continuous 

Perceive-Reason-Act (PRA) cycle, including communicating and coordinating actions with 

other agents in order to achieve global objectives that are consistent with individual goals", 

as shown in Figure 2-1. 

Software Agent 

Perceive Reason Act 

\Z 
Environment 

Physical 
Hosting 

Environment 

Multiagent 
Environment 

Figure 2-1 : Software Agent Overview 

Here the environment certainly includes both the physical hosting environment, such 

as an electric power system, and the midfiagenf environment consisting of other agents. The 

agent has the ability to persistently sense its environment. Based on the percepts from the 

environment and its own domain knowledge, the agent actively performs a reasoning process 

(decision-making) to determine the possible actions to best achieve the objectives. Then the 

agent autonomously carries out the selected set of actions, which in turn will change the 
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states of the environment. 

2.3.2 Attributes of Intelligent Software Agent 

As mentioned earlier, although there is no unanimously agreed definition of the term 

agent, an intelligent software agent may possess some characteristics, such as awfonomy, 

social ability, reactivity, and pro-activeness, as shown in Figure 2-2. Some of those 

commonly identified agent attributes are described below. 

• Autonomy. An agent can operate without direct intervention of humans or others, 

and have some kind of control over their actions and internal state [Castelfranchi, 1995]. This 

means that it should have some degree of autonomy from its user. A more autonomous agent 

can pursue an agenda independent of its user. This requires aspects of periodic action, 

spontaneous execution, and initiative, in that the agent must be able to take preemptive or 

independent actions that will eventually benefit the user [Foner, 1993]. 

- SocwzZ Agents can interact with other agents (and/or possibly 

humans) via some kind of aggnf-commwTHcafion Zongwagg (ACL) [Wooldridge, 1995]. 

Inter-agent cooperation is a mechanism by which agents exchange their knowledge, their 

beliefs and their plans to work together and solve larger problems, which are beyond their 

individual capabilities. 

rational 

(^romrnun icat*ive^ 

autonomous 

temporally 
.continuous. 

reactive 

Figure 2-2: Properties of Intelligent Agent 
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" #gacfzvzfy. Agents perceive their environment, (which may be the physical world, 

a user via a graphical user interface, a collection of other agents, the Internet, or perhaps all 

of these combined), and respond in a timely fashion to the changes that occur in it 

[Wooldridge, 1995]. 

- Pro-acfzvgM&M. Agents do not simply act in response to changes in the 

environment; they are able to exhibit goal-directed behavior by taking the initiative 

[Wooldridge, 1995]. 

• Mobility. Agents can move {code, state} around an electronic network and 

continuously execute its actions [Wooldridge, 1995]. This ability could reduce data transfer 

while interacting with environment and help in controlling the information flow to alleviate 

network bandwidth saturation. For example, if data is distributed but bandwidth is costly, 

unreliable or temporary, then it may be better for the agent to move to where the data is and 

do its processing there. 

• Rationality. Agent may be able to maintain a balance between individual and 

social responsibilities while it acts to achieve its goals. 

Temporal Continuity. Agents are continuously running processes, not "one shot" 

computations that terminate [Wooldridge, 1995]. 

- Adaptivity. Agents can continuously adapt to changes in the environment 

[Wooldridge, 1995]. 

" Personiz,ability. The point of an agent is to enable people to do some task better. 

Since people don't do all the same tasks, and even those who share the same task do it in 

different ways, an agent must be educable in the task and how to do it. Ideally, there should 

be components of learning and memory [ Wooldridge, 1995]. 

These above properties can be descriptive in distinguishing agents from ordinary 

software programs. However, it is not realistic to assume that the actual agents will satisfy all 

of these characteristics in their full sense. 
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2J3 Multiagent Systems 

Multiagent Systems (MAS) are systems of multiple software agents which are 

essentially autonomous, distributed and maybe heterogeneous in nature. As pointed out by 

Durfee et al. [Durfee, 1989], usually several agents need to form "a loosely coupled network, 

called a multiagent system, to work together to solve problems that are beyond their 

individual capabilities or knowledge of each entity", as shown in Figure 2-3. 

More recently, the term multiagent system has been given a more general meaning, 

and it is now used for all types of systems composed of multiple autonomous components 

showing the following characteristics [Jennings, 1998]: 

Each agent has incomplete capabilities to solve a problem 

• There is no global system control 

• Data is decentralized 

Computation is asynchronous 

Multiagent system is regarded as a natural abstraction of the real world (a community 

of entities each with their own goals, communicating and often working together to achieve 

mutual benefit). In order to ensure satisfactory operation of multiagent systems, coordinated 

interaction among several autonomous entities is extremely important because no single 

individual solutions J 
Wgen%)l_^ 

organizing 

organized MA 51 

.coordination 

hierarchy 

Figure 2-3: Multiagent Systems Overview 
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agent in a MAS has sufficient resources, intelligence, or competence to solve the problem on 

its own. Thus without coordination, all the benefits of decentralized problem solving 

provided by MAS will totally vanish. Successful application of multiagent systems needs to 

coordinate intelligent behaviors among agents - how they coordinate their knowledge, goals, 

skills, and plans jointly to take action or to solve problems. 

Multiagent systems have proven to be an effective paradigm in a number of 

distributed networked applications that require information integration from multiple 

heterogeneous autonomous entities [Honavar, 1998; Yang, 1999; Caragea, 2001]. In [Millier, 

1997], Muller proposes three requirements to be satisfied by the domain to ensure that 

multiagent systems can fruitfully be applied. First, the system should be characterized by 

natural distributivity, i.e. when mapping a distributed domain to a model, it is essential to 

keep up the distributivity, or the distributivity lies within the task structure. Second, the 

processes or objects, which should be implemented with the help of a multiagent system, are 

in need of complex interactions, e.g. they have to negotiate or exchange complex information. 

The third presupposition for the application of multiagent-systems is the demand for a 

dynamic environment. Dynamics does not only mean changing data of the environment but 

also changing the structure of the whole system. Surprisingly, our deregulated environment 

meets all the three requirements. Multiagent system is a promising paradigm for the 

information processing and decision support problems we are facing in deregulated power 

industry. 

2.4 4pp//caf/ons of 4#enf-6ased Systems fo E/ecfr/c Power 

Systems 

During the past years, software agents and multiagent systems have been used in an 

increasingly wide variety of domains, ranging from comparatively small systems such as 

email filters [Maes, 1994], information retrieval [Takahashi, 1997], to large and complex 
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mission-critical applications such as intrusion detection in communication networks [Helmer, 

1998], air traffic control [Ljunberg, 1992] as well as electric power systems [McCalley, 

2003a; Liu, 2000; Rehtanz, 2003; Gustavsson, 1999; Contreras, 1999]. It is always useful to 

do an extensive review of these agent applications. However, due to their variety nature and 

in order to focus on our problem, in what follows, we only describe some agent-based 

applications that actually utilize some of previously described agent-related desiderata, e.g., 

inter-agent communication and/or coordination, in various aspects of electric power system's 

operation and management. 

2.4.1 Power Market Modeling and Simulation 

Market-related applications of multiagent systems are being actively studied by the 

power systems community. Researchers have investigated strategic behavior of agents under 

congestive grid, design of market structures, design of auction mechanisms for power and 

ancillary services, market power analyses, application of machine learning algorithms to 

generate bidding strategies, and also to demonstrate loopholes in market designs. Recent 

representative work in this area includes [Seeley, 2000; Singh, 1998; Richter, 1999; Krishna, 

1998; Lane, 2000]. Lane, D.W. etc. [Lane, 2000] proposed and developed a multi-agent 

based system to assist players, such as, owners of power generation stations, owners of 

transmission lines, and groups of consumers, in the same market to select partners to form 

coalitions. The system provides users with a cooperation plan and its associated cost 

allocation plan for the users to support their decision making process. 

2.4.2 Transmission Planning 

Transmission planning addresses the issue of increasing transmission capacity by 

adding new lines to serve the load without violating security constraints. Contreras and Wu 

[Contreras, 1999] have reported a novel application of distributed artificial intelligence 

concepts to this traditional problem. Specifically, the researchers apply coalition formation as 
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a framework to elicit negotiated transmission planning agreements. The investigators use a 

DC power flow for system analyses. For each coalition consisting of at least one load, one 

generator, and one transmission line, the following constraints must be satisfied: generators 

must meet the load demand, no thermal limit violations, and the network must be connected. 

Initial work by the researchers used the game theoretic notion of Bilateral Shapley Value to 

allocate the benefit of the coalition among the agents. Recent work by the researchers applies 

the game theoretic-concept of the "kernel" instead of the Shapley Value for better results 

[Contreras, 2000]. 

2.4.3 Power Systems Operations 

"Asynchronous Teams" developed by Talukdar, et al [Talukdar, 1994a] are groups 

of distributed autonomous agents that cooperate to solve real-time and off-line control 

problems. The research reported in [Talukdar, 1994b] uses this concept to "agentize" the 

workhorse algorithm of power system operational planning, viz., the optimal power flow 

(OFF) algorithm. Wang, H.F. etc. [Wang, 2001], proposed a conceptual design for 

distributed control of the power system by intelligent agents operating locally with minimal 

supervisory control. 

2.4.4 Strategic Power Infrastructure Defense 

This research effort, jointly sponsored by EPRÏ and Department of Defense, to 

develop revolutionary technologies to reduce the vulnerability of the power system due to 

catastrophic and cascading events. Such an effort requires wide-area vulnerability assessment 

and coordination of several different actions. The notion of software agents and multiagent 

systems is the unifying thread of this project. The agents developed as part of this effort 

interact and take decisions using a three-layered architecture, viz., deliberative, coordination 

and reactive layers. The conceptual vision of this project and salient features of the design 

has been reported in [Liu, 2000; Amin, 2001 ; Liu, 2001]. 



www.manaraa.com

24 

2.5 Summa/y 

This chapter reviews some literature pertained to this work. First, transmission system 

maintenance strategies, power industry efforts regarding standardization of communication 

protocols and information integration are briefly described. Then multiagent system 

technology, such as agent definitions, agent properties, concept of multiagent systems and 

their attributes are described. Multiagent system technology is now fascinating the power 

system community by offering a modular, extensible, flexible, and integrated approach to 

address the complex information processing and decision support problems. 

In the following chapters, we will first introduce our risk-based transmission 

maintenance optimization problem. In order to coordinate the maintenance decisions among 

various independent entities for displacing centralized approaches, we will investigate the 

mechanism of multiagent negotiated decision-making, where autonomous distributed agents 

seek to achieve global objectives that are consistent with individual goals. A multiagent 

negotiation system will built in which software agents, armed with coded negotiation models, 

represent different decision-makers, and conflict resolution is achieved via inter-agent 

message exchange until agreement is reached. 
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3 TRANSMISSION SYSTEM MAINTENANCE OPTIMIZATION 

3.7 /nfrodwcf/on 

Most maintenance practices in transmission systems currently rely on time schedule 

or some other counters, such as number of operations and/or visual inspections. These 

existing maintenance approaches may be overly conservative and could result in maintenance 

being scheduled when none is required or deferred when it is critical. Innovative maintenance 

programs are needed in restructured power systems that would allow utilities to take proper 

steps to ensure reliability while controlling and, even lowering costs. 

In this chapter, we first introduce such a program, a risk-based maintenance 

optimization system for transmission equipment [Jiang, 2003a; Jiang, 2003b], This 

framework provides the ability to select and schedule maintenance tasks so as to utilize the 

available financial and human resources to optimize the risk-reduction achieved from them 

within a given budget cycle. It is important to observe the significance of this objective in 

that it differs from the traditional utility objective of minimizing costs subject to some 

constraint on minimal maintenance achievement. It also differs from the long-term objective 

of maximizing equipment life. 

Although this approach is applicable to all transmission equipment, in order to limit 

our work, we will focus on power transformer in the rest this thesis. We will describe various 

transformer monitoring techniques, avai lable condition data, as well as major failure modes. 

Then, we will develop several models for systematically utilizing available equipment 

condition/life data to provide a quantitative estimation of equipment's failure probability, 

which is a prerequisite for the implementation of our risk-based maintenance optimization 

system. 



www.manaraa.com

26 

3.2 R/sk-Aased T^ansm/ss/on Mamfenance Opfwmzaf/on 

Transmission equipment maintenance is costly but essential to ensuring transmission 

system reliability. Its effectiveness can vary dramatically depending on the target and timing 

of the maintenance activities. The state of the art in transmission maintenance practice goes 

by the term "reliability centered maintenance" (RCM) as descried before, which prioritizes 

maintenance activities based on quantification of likelihood and consequence of equipment 

failures. 

The objective of the work reported in [Jiang, 2003a; Jiang, 2003b] is to develop a 

systematic methodology for transmission maintenance scheduling by achieving maximum 

cumulative system risk reduction, subject to constraints on economic resources, available 

maintenance crews, and restricted time intervals. We have developed such an optimization 

problem and solution algorithms, described in [Jiang, 2003a; Jiang, 2003b]. Here we just 

provide the attributes of this problem that are germane to the objective of this work. 

The risk index for a single contingency is an expectation of severity, computed as the 

product of contingency k's probability p(k) with contingency severity sev(k\m,f), where m 

indicates the m'h maintenance task and thus the network configuration in terms of network 

topology and unit commitment, and t indicates the hour and thus the operating conditions in 

terms of loading and dispatch. The risk is given by R{k,m,t)~ p(k)*sev(k\m,t). A reference 

"basecase" network configuration (with no maintenance task) is denoted with m-0. The 

severity function sev(k\m,t) comprises two parts: system related severity that captures the 

contingency severity in terms of overload, cascading overload, low voltage and voltage 

instability [Ni, 2003]; component damage severity that describes severity related to 

component damage and re-dispatch cost. The risk associated with any given network 

configuration and operating condition is computed by summing over the no-contingency 

condition (&=0) and all JV contingencies. Cumulative risk assessment performs sequential, 

hourly simulation over a long term, e.g., 1 year. With some simplified assumptions as 



www.manaraa.com

27 

discussed in [Jiang, 2003b], we can compute the cumulative-over-time risk reduction due to 

maintenance task m that reduces the contingency probability by Ap{k,m), performed at time 

^as: 

OM(t,m,f,) = (3.1) 

Let N be the number of maintainable transmission components and be the 

number of maintenance levels for component k. Let k = l,...,N be the index over the set of 

transmission components, m = l,...,Lk be the index over the set of maintenance activities for 

transmission component k, and t = be the index over the time periods. Define 

Iselect(k,m,f)= 1 if the mth maintenance task for component k begins at time t, and 0 

otherwise; Iactive(k,m,t)=l if the m'h task for component k is ongoing at time t, and 0 

otherwise. Define d(k,m) to be the duration of task m for component k, so that 

t 
Iactivc{k,m,t) = *£Iselect(k,m,j)y (k,m,t) (3.2) 

j=t-d(k,m)+1 

Equation (3.2) indicates that determination of whether the rn'H task for component k is 

active at time t is accomplished by searching the selection function over the duration of the 

task until t. Also, cost{k,m) is the cost of the mth task for component k, and CRR(k,m,t) is its 

cumulative risk reduction if it begins at time t. Let Infeas(k,m) be the set of periods for which 

task m for component k cannot be performed. Each {component, task} combination (k,m) is 

tagged with a budget category B(k,?n)=b. For example, bel, 2, 3, 4, where 1 transformer 

maintenance, 2=tree-trimming, 3=insulator cleaning, and 4=circuit breaker maintenance. 

Crew(k,m) is the required number of crews for mth task for component k. TotCrew{b,t) is the 

number of crews available for maintenance category 6 at time f. Then the objective function 

of our maintenance optimization can be expressed as: 

Maxj ^ f ) x Zygkcf (t, m, f ) 1 (3.3) 
I k=l m=1 ;=1 I 
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Subject to: 

Jselect(k,m,t) <1, k = \,---,N (3.4) 
m-1 t-\ 

lactiveik.m,f ) = 0, V f e Infeas(k,m),\/(k,m) (3.5) 

N 4 
^2 lactive(k,m,t) * Crew(k,m) < TotCrew(b,/), = 1,...4 (3.6) 
i=l m=l 

(.k,m):B(k,m)=b 

N Lk T 
X S ^cost(k,m)*Iselect(k,m,t)<TotCost(b),b = 1,...,4 (3.7) 
A:~l 771—1 f=l 

<A,m):S(Â:,m)=/? 

/ocfivg(t, m, f ) * AR(t, m, f ) < ARmm:(f), Vf (3.8) 
k-1 m=1 

Ise lec t (k ,m, t )E  {0,1}, V (k,m,t) (3.9) 

In this optimization problem, the objective (3.3) is to maximize total cumulative risk 

reduction. Constraint (3.4) restricts each component to be maintained at most once. 

Constraint (3.5) requires each maintenance task be performed only within its feasible time 

period. Constraint (3.6) stipulates the number of maintenance tasks ongoing during any 

period is limited by crew constraints. Constraint (3.7) represents budget constraints. 

Constraint (3.8) ensures maintenance task (k,m) resulting in a risk increase of AR(k,m,t) due 

to outage of component k at time t does not exceed the maximum allowable risk increase for 

time t, ARmax(t). The maximum allowable risk increase for time t is set so that no 

maintenance outage may cause a violation of reliability criteria. To solve this optimization 

problem is to determine Iselcct(k,m,t), which then determines Iactive(k,m,t). The optimization 

problem is integer, with multiple constraints and high dimension and therefore is challenging 

to solve. We have tried three different solution methods: heuristic, branch and bound, and 

relaxed linear programming with dynamic programming/heuristic (RLP-DPH). 

Obviously in the above approach, the transmission system maintenance scheduling is 

done centrally. The exclusive advantage of this centralized processing is that the solution 
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could optimize the reliability and operation cost of the entire system. However, in practice, 

this is often infeasible. In order to solve a problem centrally, one needs the complete 

information on the objective function as well as all the constraints. As electric utilities are 

heavily separated geographically and functionally, this information may be unattainable or 

prohibitively expensive to retrieve. More importantly, independent entities may be unwilling 

to share or report their private information, as it is not incentive to do so. Thus in order to 

optimize the maintenance schedule among various independent entities in a restructured 

power system, we must look beyond the traditional centralized approach. We will develop a 

multiagent framework in Chapter 4, to facilitate distributed decision-making among different 

autonomous entities through multiagent negotiations. 

We assume that a maintenance activity, m, decreases the probability of a particular 

contingency k, which is triggered by failure of the associated equipment. In order to calculate 

the cumulative risk reduction by maintenance activities as expressed in (3.1), we need to 

determine the maintenance induced contingency probability reduction, i.e., 

(3.10) 

where P}m is the equipment failure probability before maintenance, pam is the equipment 

failure probability after maintenance. 

Calculation of the above maintenance induced contingency probability reduction is an 

extremely challenging problem. Because, unlike most reliability modeling which utilizes 

steady-state failure probabilities to capture average behavior over a large number of 

components and over an extended period of time, this asset management problem requires 

transient failure probabilities to capture instantaneous behavior for each specific component. 

As a result, failure probabilities cannot be computed from the number of failures of a 

population of components but rather from the most recent condition monitoring information 

available. 
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In the following sections, we will first review some equipment condition monitoring 

techniques, and then describe available condition data as well as major failure modes. 

As pointed out before, although the above maintenance optimization approach is 

applicable to all transmission system equipment, in order to limit our work, we will focus on 

power transformer in the rest of this dissertation. 

3.3 Mar/ous Transformer Cond/f/on Mon/for/ng Tec/wwques 

The development in sensor, communication, computer, and data storage technologies 

has allowed the realization of a variety of condition monitoring systems for bulk transmission 

system equipment, e.g., power transformers, circuit breakers, transmission lines, and other 

related equipment, in order to utilize these capital-intensive transmission equipment in the 

optimal manner. Condition monitoring provides the surveillance of operating condition of the 

equipment in order to ensure proper performance and to detect any abnormalities indicative 

of approaching failures. For power transformers, monitoring can take many forms including 

manual inspections (periodic visual inspections), continuous monitoring with a change in 

status/condition alarm as the only output (low level alarm), periodic automated monitoring 

(connection of portable analysis instruments), or continuous on-line monitoring (full time 

measurement of parameters to assess condition while in service). Below we introduce some 

of these techniques, which monitor some power transformer key parameters, and provide 

crucial information for estimating the equipment failure probability [Chu, 1999; Bengtsson, 

1996; Kirtley, 1996, Krieg, 2000]. 

33.1 Operating Condition Monitoring 

Transformer operating condition is mainly determined by its load current and voltage. 

Maximum loading of transformers is restricted by the temperature to which the transformer 

and its accessories can be exposed without excessive loss of life. Continuous on-line 

monitoring of current and voltage at operating frequency coupled with temperature 
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measurements can provide a means to gauge thermal performance of the equipment. 

3.3.2 Temperature Monitoring 

Based on temperatures measured at different parts of transformer, e.g., oil 

temperature, winding temperature; thermal related faults could be identified. There is a direct 

correlation between winding temperature and normally expected service life of a transformer. 

The hottest spot temperature of the winding is one of the most important limiting factors for 

the load capability of power transformers. Insulation materials lose their mechanical strength 

with prolonged exposure to excessive heat. This can result in tearing and displacement of the 

paper and dielectric breakdown that will result in premature failures. Different kind of 

temperature sensors including fiber optic temperature sensor can be used to obtain on-line 

temperature measurements from various part of the equipment. 

3.3.3 Dissolved Gas-in-oil Analysis 

Dissolved Gas-in-oil Analysis (DGA) has proven to be a valuable and reliable 

diagnostic technique for the detection of incipient fault conditions with liquid-immersed 

transformers by detecting certain key gases. The gases involved are generally C O ,  C 0 2 ,  

112, CZ/4, C2H2, C2H4, C2H6. For any given oil sample, the absolute and relative 

concentrations of faults gas can be used to indicate the type, intensity and location of the 

fault. Table 3-1 summarized the key gas interpretation method [Pahlavanpour, 1997]. 

For a number of years, on-line sensors for detecting hydrogen (mainly indicative of 

partial discharge, but also of arcing) have been available on the market, e.g. the Hydran 

sensor from Syprotec. These sensors arc most sensitive to hydrogen, but also measure other 

combustible gasses to a certain extent. Recently, efforts have been made to develop on-line 

sensors that measure individual concentrations of several gasses. 
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Table 3-1: Key Gas Interpretation 

Key Gas Characteristic Fault 

h2 Partial Discharge 

Thermal Fault < 300° C 

Thermal Fault 300"C~700'C 

Thermal Fault > 700° C 

#2 Discharge of Energy 

3.3.4 Moisture-in-oil Monitoring 

Moisture in the transformer reduces the insulation strength by decreasing the 

dielectric strength of the transformer's insulation system. The combination of moisture, heat 

and oxygen are the key conditions that indicate accelerated degradation of the cellulose. 

Excessive amounts of moisture can accelerate the degradation process of the cellulose and 

prematurely age the transformers' insulation system. The moisture level of the sample is 

evaluated at the sample temperature and at the winding temperature of the transformer. This 

data is vital in determining the relative saturation of moisture in the cellulose/liquid 

insulation complex that establishes the dielectric integrity of the transformer. 

3.3.5 Partial Discharge Monitoring 

Partial Discharges (PD) in the main insulation often poses a major threat to the 

function of the transformer. The major causes of the long-term degradation and ultimate 

failure of this insulation are erosion and tracking due to partial discharges. A significant 

increase either in the partial discharge level or in the rate of increase of partial discharge level 

can provide an early indication that changes are evolving inside the transformer. Localization 

of partial discharges is made acoustically using different methods for triangulation. This 

requires deep knowledge of wave propagation in different types of materials/liquids and is a 

task for highly qualified experts. 

There are also some other types of monitoring methods available, e.g. insulation 
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power factor, static charge in oil, pump/fan monitoring. From the on-line monitoring 

information, developing transformer failure modes can be detected well before they could 

lead to possible catastrophic transformer/system failures. 

33.6 Power Transformer Condition Data 

These above condition monitoring techniques provide enormous amount of 

equipment condition data, which is a good indication of the equipment's operating condition. 

Typically the data includes: 

• From testing (annual): insulation resistance, insulation power factor, winding 

resistance. 

• Data from sampling (monthly to annual): gas-in-oil testing, moisture-in-oil. 

• From inspections (monthly): conditions of transformer surface, oil levels, peak 

temperatures (top oil and windings), silica gel breathers, pressure gauge reading, 

pressure relief vents, cleanliness of bushings, condition of cooling fans. 

• From real-time SCAD A/EMS (every 3-5 minutes): loading, temperatures. 

• From on-line condition monitoring (continuously): real-time current & voltage, 

temperatures, gas-in-oil contents, moisture content in oil, acoustic monitoring (partial 

discharge). 

An important issue related to the accumulation of so much data is how to most 

effectively utilize it to optimize related maintenance activities. Due to the physical nature of 

the electric power systems and evolution of equipment condition monitoring techniques, the 

equipment information are highly heterogeneous, physically distributed, and enormous in 

size. Thus, the effective utilization of the equipment condition information presents great 

challenge in practice. Multiagent systems are capable of extracting and integrating 

information from heterogeneous, autonomous, and distributed data sources. And fortunately, 
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such a system, called INDUS [Reinoso-Castillo, 2002], has already been developed within 

our research team. 

3.4 Typ/ca/ Transformer Fa//ure Modes 

During the entire operation time, a power transformer has to withstand numerous 

stresses. These stresses are of thermal, electrical, chemical and mechanical nature and can 

result in various problems, which may eventually lead to a catastrophic failure if not 

corrected by maintenance in time. Based on an extensive review of literature and some other 

useful resources, we have summarized some typical failure modes, causes, effects as well as 

corresponding maintenance activities for power transformers, which is shown in Appendix A. 

These failure modes can be mainly grouped into four categories: general degradation, 

thermal related failures, dielectric related failures, and mechanical related failures [Bengtsson, 

1996]. 

3.4.1 General Degradation 

Degradation means a reduced insulation quality. The insulating materials used in the 

manufacture of power transformers, whether they are solid (paper, cellulose, pressboard) or 

liquid (oil), undergo a chemical alteration with time under the influence of heat and other 

factors such as oxygen and moisture [Hochart, 1987, p78]. The deterioration processes are 

accelerated by thermal and voltage stresses. The rate of decline in the strengths of an 

insulation system is a function of temperature, and is believed to follow the Arrhenius 

chemical reaction equation [Flanagan, 1992]. Various tests can be taken to determine the 

condition of the insulation system, including insulation resistance, insulation power factor, 

dielectric strength, interfacial tension (IFT), moisture content [IHKF Std C57.125-1991]. 

3.4.2 Thermal Related Failures 

Overload, failures in the cooling system and high ambient temperatures are the main 
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causes of transformer thermal problems. Thermal stress is a leading factor that causes the 

insulation degradation. Exposed to prolonged excessive heat, insulation materials lose their 

mechanical strength and may lead to entire insulation breakdown. Decomposition products 

from breakdown of the oil, insulating paper or boards, glues, are transported through the 

transformer by the coolant oil. Some are low molecular weight gases dissolved in the oil and 

can be identified by gas chromatography. Dissolved Gas-in-oil Analysis (DGA) has proven 

to be a valuable and reliable diagnostic technique for the detection of incipient fault 

conditions with liquid-immersed transformers by detecting certain key gases. The gases 

involved are generally CO , CO;, , 0%, CH*, Cgff%, C;#,, C^Hg. There is also a 

direct correlation between winding temperature and normally expected service life of a 

transformer [IEEE C57.115-1991], The winding hottest spot temperature is also one of a 

number of limiting factors for the load capability of transformers [Chu, 1999]. 

3.4.3 Dielectric Related Failures 

Partial discharge, corona, arcing, insulation tracking, static electrification of oil, are 

all forms of dielectric failure modes. Among them, partial discharge is the most common one. 

Reference [IEEE Std C57.127-2000] describes the instrumentation, test procedure and results 

interpretation for the acoustic emissions detection of partial discharges in power transformers. 

The dielectric breakdown of insulation will result in transformer failure. 

3.4.4 Mechanical Related Failures 

As a result of short circuit forces, or of possible vibration of supporting parts, 

mechanical related failures often occur in the active parts of the transformer. Resulting faults 

are deformations of the windings or of the cleat and leads [Bengtsson, 1996]. The most 

effective methods to detect any possible mechanical related failures include frequency 

response analysis (ERA) and leakage inductance. 

Other failure modes include bushing contamination, earthing malfunctions, and 
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protection failures. 

As summarized in Appendix A, if there is some abnormality in equipment condition 

information, corresponding failure mode(s) could be identified and appropriate maintenance 

activities should be performed to prevent possible equipment failures. 

3.5 /nsfanfaneous Equipment fa//ure ProAab///fy Esf/maf/on 

The goal of this section is to develop some systematic and consistent approaches for 

associating to any maintenance task a quantitative evaluation of the reduction in probability 

of occurrence of the failure mode(s) the task is intended to affect. We assume a one-to-one 

mapping between a failure mode and a contingency k, so that there is no notational problem 

with denoting the desired probability reduction from maintenance m  by Ap ( k , m ) .  This 

assumption is easily lifted for a contingency that may be caused by multiple failure modes, as 

long as the failure modes are independent. 

As indicated before, most probabilistic analyses for reliability focus on component 

average performance over long time periods and therefore average (or steady-state) 

probabilities are desirable to characterize the component behavior. But in order to quantify 

the component failure probability reduction from maintenance activity m, we need to 

estimate component instantaneous failure probability based on its available condition 

monitoring information. In the following sections, we will present several models for linking 

the equipment condition monitoring information to its time-dependent failure probability. 

3.5.1 Hazard Function Models 

We begin with some concepts in equipment reliability. Let T denote the time from the 

equipment is put into operation at time t = 0 until a failure occurs. The equipment may be 

either new or used when it is put into operation. In many cases the equipment will be re-put 

into operation after a refurbishment or a failure has been corrected. The uncertainties in the 
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time to failure, T, may be described by the distribution function F(f) = Pr(T < f), or the 

probability density function f ( t )  =  F ' ( t ) . The probability density function f { t )  may be 

expressed as: 

/(f)Ar = P(f<T<f + Af) (3.11) 

Hence, f ( t ) A t  is approximately equal to the probability that the equipment will fail 

in the time interval (/, t + At). The survivor function, which gives the probability that 

equipment will not fail up to time t, is given by: 

K(f) = Pr(T>f) (3.12) 

The equipment's life distribution is often most effectively characterized by the 

so-called failure rate, or hazard function h(t), which is the conditional probability of failure. 

The failure rate function h ( t )  may be expressed as: 

A(f) = lim—Pr[f<r<f + Af|T>f] (3.13) 
A'-»0 

If we consider the equipment that has survived the time interval (0, t ) ,  i.e. T > t ,  then 

the probability that the equipment will fail in the time interval (t, t + At)is approximately 

h ( t )  *  A l . It is only necessary to know one of the functions h ( t ) ,  f ( t ) ,  R ( t ) in order to be 

able to deduce the other two, as illustrated in Figure 3-1 [Wolstenholme, 1999J. 
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m) 

h(t) 

0 

Figure 3-1: Relationships between h(t), f(t), and R(t) 

The Weibull distribution is a widely used distribution to model equipment's 

time-to-failure. The Weibull probability density function is: 

•P 
-exp 

(3.14) 

0, otherwise 

P is called the shape parameter because it determines the shape of the distribution. 

The parameter a is called the scale parameter because it determines the scale. Typically P is 

between 0.5 and 8.0. As P increases, the mean of the Weibull distribution approaches oc and 

the variance approaches zero. Figure 3-2 illustrates the Weibull distribution with different 

shape and scale parameters. 
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Figure 3-2: Weibull Distributions 

The Weibull hazard function is: 

A(f)=^—s-, f>0 (3.15) 
ap 

If P < 1, the failure rate is decreasing; if fi = 1, the failure rate is constant at a value of 

1/ a ; if P > 1, the failure rate is increasing. 

In order to estimate the hazard function h ( t )  for power transformers, a procedure is 

described in [Kogan, 1988]. Suppose we record transformer life data for specific kinds of 

power transformers (make, model and voltage level), In interval [tt, f,-+1) \ let TV,- denotes 

the number of power transformers survived at f,, Ft indicates how many transformers 

failed, and C, is the number of power transformers that were censored. For censored 

transformers, they are treated as removed ones because we assume their exact times of failure 

or removal are known. It is clear that the number of power transformers surviving until 

is: 

# , + l = A r , - F , - Q  ( 3 . 1 6 )  

1 The time interval for estimating power transformer failure rates must be not include a time period in which some 
maintenance was performed, i.e., it must be between maintenance periods. Typically, it ranges from one to two years. 
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The "end of observation" time, f», for the j-th transformer in interval [f;, f;+i) is defined 

as: 

tij = 

tW» $ transformer is observed to fail 

t j j c ,  i f  j t h  t r a n s f o r m e r  i s  r e m o v e d  ( c e n s o r e d )  (3.17) 

Then the total amount of time of exposure to risk of all power transformers, 77?,, during 

interval [/,•, ?/+i)is clearly: 

N, 
TR, = Z (f,-f,) (3.18) 

j=l 

Then the estimated central failure rate in interval [f,-, ?i+1) is defined as: 

%=F,/7%, (3.19) 

If we do not know the exact time of failure or removal, it would be reasonable to assume that 

all failures and removals are expected at the middle of the interval ti+i ). Then the 

estimated central failure rate in [rz-, fi +1 ) can take the form: 

^ = ? w r (3.20) 
ih+1 ~ fi )(Ni - (Fi ~Ci)! 2) 

Although expression (3.20) is not as precise as (3.19), it is more precise than the estimation 

frequently used in engineering applications for the failure rate: 

^ ^ /[(':+! -)#f ] (3 21) 

With reasonable precision data of the failure or removal times of the power transformers, we 

can use either equations (3.19) or (3.20) to estimate the failure rate, ^, as illustrated in 

Figure 3-3. 
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h(t) 

Figure 3-3: Bathtub Curve 

Through experience and numerous data gathered by researchers and engineers, the 

transformer failure rate (hazard function, /?,• ) has been shown to follow the so-called 

"bathtub curve", as shown in Figure 3-3. The bathtub curve depicts equipment life in three 

stages. During the first stage, failure rate begins high and decreases rapidly with time. This 

stage is known as the infant-mortality period, and it has decreasing failure rate. The infant 

mortality is followed by nearly constant failure rate period, which is usually long. Finally, the 

curve ends with an increasing failure rate. This is the period of aging. This bathtub curve can 

be well modeled by the Mixture Weibull, comprising two or three Weibull distributions each 

of which have well-tuned and unique scale and shape parameters. 

In a simplified method, called hazard function model 1 as shown in Figure 3-4, we 

utilize the equipment service time (component age) to get its time-dependent failure rate. 

Assume at time t y , maintenance work m renews equipment condition back to r0, then 

Ap(k,m,tf )can be easily obtained from the hazard function. As we can see from Figure 3-4. 

repeating a certain maintenance task will result in decreasing probability reduction. 
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Figure 3-4: Hazard Function Model 1 

Alternatively, in what we call hazard function model 2, we can divide the total 

transformer life cycle into several stages according to its condition, e.g. new, minor 

deterioration, major deterioration and failure, as illustrated in Figure 3-5. By evaluating the 

available equipment condition monitoring data, we can use the deterioration function g(x), 

(which will be described in the next section), to determine the appropriate deterioration levels 

and then map the corresponding failure probabilities for both before maintenance, p&m, and 

after maintenance, pam , in order to calculate the maintenance induced contingency 

probability reduction. 
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Figure 3-5: Hazard Function Model 2 

In the above two hazard function models, the hazard function that captures the 

equipment life behavior remains constant. However, as more timely equipment condition 

information streams in, it can be used to update this function to reflect the equipment actual 

performance. We will introduce a Bayesian framework capable of updating equipment 

information based on newly acquired condition data in a later section. 

3.5.2 Markov Model 

Essential requirements for the approach are that we have at our disposal a set of 

condition measurements x(t)=[xi(t),x2(t),...,xn(t)] for a number of similar components taken 

over an extended period of time t=0,l,...,T, and that it is possible to characterize boundary 

conditions that separate D states of deterioration, in terms of those measurements, via the 

deterioration function g(z), such that deterioration level j is identified by where 

the last state j-D represents the failed state. It is important to note here that state D need not 

represent the rare "blue smoke" condition where the component has catastrophically failed 

(and for which very little data is typically available). Rather, state D may simply represent a 

set of measurement values for which engineering judgment would result in an action to 
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remove the component from service. 
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(failed) 
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(major) 

Level 1 
(new) 

Statistical 
Processing 

Deterioration 
Function g(x) 

Figure 3-6: Markov Model 

The approach is illustrated in Figure 3-6, based on a multi-state Markov model, where 

each of the D states is represented as a deterioration level. The particular representation of 

Figure 3-6 shows D-4 deterioration levels, and deterioration level j can be reached only from 

deterioration level j-1. However, the model is flexible so that any number of deterioration 

levels can be represented, and, if data indicates that transitions may occur between 

non-consecutive states (e.g., state 1 to state 3), the model can accommodate it. The transition 

from level 4 to level 1 stochastically represents the effects of maintenance, and since in our 

work, maintenance is a deterministic decision that results from the analysis, we would 

normally set /i4i=l-

There are three main steps to implementing the approach: (a) Obtain the deterioration 

function g (AT), (b) Perform the statistical processing necessary to estimate the transition rates 

Ajk. (c) Use the model to obtain the failure probability. 

» Deferzorofzon /wMCfzon: In both the above hazard function model 2 and Markov 

model, we need to use the equipment condition monitoring information data to determine its 

deterioration level. The deterioration function, denoted by g(z), may be an analytical 

expression but in general would be a set of rules encoded as a program, likely consisting of a 

nested set of statements that returns a scalar assessment value. 
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One method for monitoring the deterioration of transformer insulating material 

involves calculating the total volume of gas evolved. The total volume of evolved gas is an 

indicator of the magnitude of incipient faults. Identification of deterioration levels as a 

function of concentrations for separate gases as well as the total concentration of all 

combustible gases is provided in [IEEE Std C57.104-1991], as shown in Table 3-2. Here 

conditions 1, 2, 3, 4 correspond to the deterioration level 1. 2, 3,4 in both the hazard function 

model 2 and the Markov model. Table 3-2 by itself represents only a first-order assessment 

criterion and must be supplemented with additional rules for interpreting DGA data for 

specific cases. For example, the rate of change of each gas concentration may be more 

informative of impending failures than the gas concentrations themsel ves. 

Table 3-2: Determine the Transformer Condition based on DGA2 

Status 
Dissolved Key Gas Concentration Limits (ppm) 

Status 
h2 ch4 C2H2 C2H4 CzHs CO CO; TDCG 

Condition 1 100 120 35 50 65 350 2500 720 

Condition 2 
101-

700 

121-

400 
36-50 

51-

100 

66-

100 

351-

570 

2500-

4000 

721-

1920 

Condition 3 
701-

1800 

401-

1000 
51-80 

101-

200 

101-

150 

571-

1400 

4001-

10000 

1921-

4630 

Condition 4 >1800 >1000 >80 >200 >150 >1400 >10000 >4630 

For the model of  Figure 3-6, the assessment value would be a deterioration level 1, 2, 

3, or 4. EPRI has made significant effort in summarizing such rules, and most companies 

have expertise embedded in engineering personnel from which such rules may be developed. 

It is likely that such rules would depend not only on the condition measurements x but also 

the rates of change in such measurements. A challenging and worthy research problem for 

most equipment failure modes is to develop deterioration functions that return physical 

attributes characterizing the failure mode. Solution to this problem requires fundamental and 

2 TDCG: Total dissolved combustible gas. The TDCG value does not include C02, which is not a combustible gas. 
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complete understanding of the physical processes involved in the component deterioration. 

Although our overall approach readily admits such functions, they are not required. 

- Thz/mfzon rafea: Once we decide how many deterioration levels to model and 

consequently how many Markov states are needed, (for example, 4, as shown in Figure 3-6), 

the transition intensities between these states can be obtained from life histories of multiple 

units of the same manufacturer and model. In the case of Figure 3-6, we would need to 

compute À]2, A23, and A34. As indicated above, suppose we have a set of condition 

measurements x(t)=[x](t),x2(t),.. .,xn(t)] for N similar components taken over an extended 

period of time t~0,l,...,T. We use the deterioration function to compute the deterioration 

level for each component. For component i, this enables identification of the time it spends in 

deterioration level j, e.g., yg. For the same type of equipment population, the estimated time 

spent in state j would be the mean of these durations, which is, 

The desired transition intensities are obtained by inverting these mean duration times. 

In this procedure, one must not use data across maintenance periods to compute mean 

duration times since a maintenance task inhibits the deterioration process being modeled. 

• Failure probability calculation: For a particular set of transition rates, the 

transition probability matrix for the case represented by Figure 3-6 as: 

The state probability vector gives the probability that a component is in any particular 

deterioration level at a given time, and is denoted by 

(3.22) 

P = 

1 — /i] 2 /ij2 0 0 

0 1 — /&23 /i-23 0 

0 0 1—/Î34 /Î34 

0 0 l-/4u 

(3.23) 

KAr) = [p,(AT) Pz(An Ps(A^) P/AT)] 

(3.24) 
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where &=7,2,3,..., and Tis the time step. If at time f=0, we know that the component resides 

in deterioration level j, then the initial state probability vector is comprised of all zeros except 

for element j, which is 1. For example, if we know that the component is in deterioration 

level 1 at t=(), then 

p(0) = [l 0 0 0] 

(3.25) 

The probability of finding the component in any deterioration level at time hT is then 

given by: 

(3.26) 

Given that at any particular time (denoted by t=0) we know the component's 

deterioration level, then the last element of the 1x4 row vector in Eq. (3.26) provides the 

probability of residing in the failed state in any future time interval. 

Eq. (3.26) is used to obtain the contingency probability for our long-term simulation, 

but we must also have a deterioration assumption that describes the levels of deterioration 

the component is expected to be in throughout the simulation period. The simplest 

deterioration assumption is that each component remains in the same deterioration level as 

characterized by the most recent condition measurement. In this case, we use h-1 in Eq. 

(3.26) and the obtained probability of residing in the failed state is the contingency 

probability used in each simulation time step. We might also assume that the component does 

in fact deteriorate throughout the year so that at certain times it moves from one deterioration 

level to another. 

The contingency probability reduction from a maintenance task requires an 

assumption on the deterioration level resulting from the maintenance task. If we assume that 

a particular maintenance task results in renewing the component to deterioration level 1, then, 

if the component is in deterioration level 3 (for example), the contingency & probability 
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reduction for maintenance task y», Ap(&,/n), is given by the last element of the 1x4 row 

vector resulting from the calculation: 

[o 0 1 0]p-|l 0 0 0]p = [-l 0 1 o]p 

(3.27) 

As pointed out before, in the above procedure of calculate transition rates, one must 

not use data across maintenance periods to compute mean duration times since a maintenance 

task inhibits the deterioration process being modeled. However, at most of the time, the 

utility-recorded transmission equipment life data does include maintenance activities. One 

possible way to account for the maintenance effects on the transition rates is described as 

follows. 

For a particular power transformer, suppose it takes the transformer >'23 (years) to 

transit from state 2 to state 3. And during this period, there are m major maintenance and n 

minor maintenance activities has been carried out on this power transformer, then we 

normalize the time V23 for this transformer in the following way: 

fz, = >'23/(l+m&i+"&2) 

(3.28) 

where, is the normalized duration time; 

y23 is the time it takes the transformer transiting from state 2 to state 3; 

m, n are the numbers of major and minor maintenance activities respectively 

performed on this transformer during this time period; 

k] and A? are weighing parameters for major and minor maintenance activities 

respectively, and 0< kz < kt <1. 

Then, for the similar equipment population, the estimated time spent in state y would 

be the mean of these normalized durations. And the desired transition intensities are obtained 

by inverting these mean duration times. 
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We have obtained some transmission equipment condition monitoring and 

maintenance history information from a US utility database. However, the information 

contained in the database is only for a very limited number of years. It is unrealistic for us to 

estimate the entire equipment life data from this database. It is desirable for us to use actual 

equipment life data to test our method, however without that, we can still give an illustrative 

example here. We speculate the durations of a population of power transformers (115 KV) 

spend in deterioration level j, e.g., ytj, as shown in Table 3-3. 

Table 3-3: Transition Rates of 115 KV Power Transformer 

Transformer 
ID 

Time to Transit between States 
(years) 

Expected Life 
(years) 

Transformer 
ID 

y# #3 #4 

Expected Life 
(years) 

1 8.5 19.5 25 53 

2 10.5 22 26 58.5 
3 11 21.5 23.5 56 

4 9.8 17.5 20 47.3 
5 8.9 18.5 18.5 45.9 
6 12 25 26.5 63.5 
7 11.5 23 27 61.5 
8 7.5 18.5 19.5 45.5 
9 10.7 17 20.5 48.2 
10 12 24.5 22.5 59 

Mean 
Durations 

10.24 20.7 22.9 53.84 

Transition 
Intensities 

0.0977 0.0483 0.0437 

Then the transition probability matrix is: 

1-^2 ^12 0 0 "0.9023 0.0977 0 0 

0 1-^23 ^23 0 0 0.9517 0.0483 0 

0 0 1-^34 0 0 0.9563 0.0437 

0 0 1-/4,1 1 0 0 0 

As listed in Appendix B, based on the DGA results of a power transformer extracted 

from our database, we use [IEEE Std C57.104-1991] to identify the deterioration levels of the 
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transformer. Then we apply the above procedure to calculate the instantaneous failure 

probabilities of the power transformer. The results are shown in Table 3-4 and also plotted in 

Figure 3-7. 

Table 3-4: Power Transformer Instantaneous Failure Probability Calculation 

Time TDCG 
Deterioration 

Level 

Failure 

Probability 

12/15/1993 2528 3 0.0437 

8/3/1994 2806 3 0.0437 

10/10/1995 2763 3 0.0437 

5/7/1996 2436 3 0.0437 

7/14/1998 2280 3 0.0437 

9/29/1998 5122 4 1 

11/6/1998 4 1 0 

7/27/2000 1124 2 0 

10/8/2001 1443 2 0 

3/21/2002 1346 2 0 

3/31/2003 907 2 0 

11/25/2003 892 2 0 

As we can observe from Figure 3-7, there are two significant failure probability 

changes during Jul. 1998 and Nov. 1998. We have confirmed with the asset owner that the 

condition of this transformer deteriorated rapidly during that period (the failure probability 

increased to 1 at Sep. 1998), and then they had performed an oil change on this transformer 

(the failure probability decreased to 0 at Nov. 1998). We will also compare this failure 

probability estimation with that of Bayesian method in the next section. 
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Figure 3-7: Transformer Instantaneous Failure Probabilities 

In this Markov model, we first derive the transition rates from the equipment life 

history and then the transition rates remains unchanged. However, as time goes by, more 

equipment life data becomes available, and it can be used in updating the corresponding 

transition rates. A Bayesian method capable of doing so will be described in the next section. 

3.5.3 Bayesian Approach 

In this section, we develop a Bayesian approach as complementary of the previous 

methods for estimating the failure rate of power transformers. Because power transformer 

failures tend to be relatively rare events, empirical data for parameter estimation (e.g., the 

hazard function or the transition rates in Markov model) are generally spare. Thus, Bayesian 

method becomes a natural means to incorporate a wide variety of forms of information in the 

estimation process. 

In the Bayesian framework, the uncertainties in the parameters due to lack of 

knowledge are expressed via probability distributions. This includes unknown distribution 

parameters. The Bayesian approach treats the unknown parameter, e.g., a or P in the Weibull 

characterization of the hazard function, or the transition rates in Markov model, as a random 

variable. Suppose r is an unknown parameter in our probability model. We first define a 

distribution, P(f), which generally aim to be as uninformative as possible. P(f) is the 

prior distribution which represents uncertainty about T based on prior knowledge, e.g. 
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historical information. Then, the posterior distribution of T, given some observations of 

transformer condition monitoring data, is given by Bayes' Rule: 

Here P(data) = J P(data\r)P(t)dT _ Suppose the obtained condition monitoring 

information includes: jq, x2, x3, x4, which may represent the DGA results, temperatures 

and other information. Then the conditional distribution P(data\r) takes the form of 

P(xy ,x2,x3,x4\t) , by the product rule of probability, which can be factored as: 

f(%l,a2,%3J4|r) = 7% (^3^1^2,0 
, (3.31) 

If X [ ,  x 3  '  x 4  are independently distributed, Eq. (3.23) can also be written as: 

f(xi,x2,%3, %4|?) = f (%i |r)f (xzl^f (%3|r)P(z4 |r) (3.32) 

The resulting posterior distribution in (3.30) is a conditional distribution, conditional 

upon observing equipment monitoring data. Thus, by using the above Bayesian approach, we 

can continuously update the equipment failure probability model based on available 

equipment condition monitoring information. A Bayesian framework of updating equipment 

hazard function is illustrated in Figure 3-8. 



www.manaraa.com

53 

Bayesian 

Update 

Assumed 

Probabilistic Model 

Condition Monitoring 

Information 

P=2 ^ 

p=i 

Figure 3-8: Bayesian Analysis of Equipment Failure Rate 

We provide a Bayesian example for estimating transformer failure rate by updating 

the hazard function. Since the Weibull distribution shape parameter j3determines whether the 

failure rate is increasing or decreasing, for simplicity, we assume scale parameter oris known 

and only model the uncertainty in the shape parameter /?using a normal distribution with ju 

and y 2  as its mean and standard deviation, i.e. /? ~ N(ju ,y 2 )  .  We use available 

transformer DGA results to update this distribution by assuming that the amount of total 

dissolved combustible gases, G also follows a normal distribution, i.e. 

G ~ N(cofJ + ki, a)2 a2 ), where i = 1, 2, 3, 4, corresponds to the conditions indicated by 

[IEEE Std C57.104-1991]: a) is a known parameter; is the average amount of total 

dissolved combustible gases in condition i  which can be obtained from [IEEE Std 

C57.104-1991] if no historical information is available. Then, by the linearity of normal 

distribution, we can get: 

Gfemp = — -
A) 

(3.33) 

Using the above Bayesian update framework, we can get the posterior of P, which is 

still a normal distribution with mean and variance given by: 
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Gfemp + — (3.34) 

Var(^|G)=— (3.35) 

In this example, we also use a set of transformer DGA results obtained from a US 

utility, which is given in Appendix B. The data consist of the DGA results for a power 

transformer over a 10-year period. As stated before, our choice of the normal distribution to 

analyze this DGA data is for illustration purpose only. The values of these known parameters 

used in our example are: a)  - 25 , y 2  -  2,  a 2  = 25, k 2  -1200 (for the period from Jul. 

2000 to Nov. 2003), k} - 2500 (for the period from Dec. 1993 to Sep. 1998). And the initial 

value of ju is 1.5 (Dec. 1993). The evolution of means of the posterior distribution of shape 

parameter (3 is shown in Figure 3-9. We specify the scale parameter by taking advantage of 

empirical transformer failure rate is about 2% per year, i.e. a=50 if (3=1. Based on the above 

expectations of the posterior distribution of the shape parameter, we can estimate power 

transformer failure rate using Eq. (3.15). The failure rate estimations based on both Markov 

model and Bayesian model are plotted in Figure 3-10. 

Expection of Shape Parameter 

8 
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Figure 3-9: Expectation of Shape Parameter 
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Figure 3-10: Transformer Failure Probability Estimations 

From above Figure 3-10, we find that the overall shape of the two estimation curves 

fits each other. For Markov Model, the estimation is a step function, and could significantly 

change from one state to the next state, e.g., failure probability changes from 0.0437 (in state 

3) to 1 (in state 4) and to 0 (in state 2); For Bayesian model, because new estimation is 

resulted from updating previous information, the Bayesian estimation is more continuous and 

consistent. However, the average Bayesian estimated failure probability during one state is 

very close to that of Markov model. This provides a validation for our models of estimating 

equipment instantaneous failure probability. 
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3.5.4 A Comparison between these Methods 

We have described several methods for estimating the instantaneous failure 

probability for transmission equipment. A comparison between these methods is summarized 

in Table 3-5. The hazard function (Weibull function) models are the simplest and easiest to 

use. The Markov model is straightforward and flexible to accommodate different modeling 

needs. And the Bayesian method is mathematically stricter and thus requires more 

computation. 

Table 3-5: A Comparison between These Methods 

Model 

Weibull Markov 

Method 

Deterioration 
Function g(x) 

Constant model, update 
the "time" 

Constant model, update 
the "state" 

Method 

Bayesian 
Constant time, update the 
model 

Update model, update 
the "state" 

3.6 Summary 

In this chapter, we first introduced an innovative program for transmission 

maintenance scheduling by achieving maximum cumulative system risk reduction, subject to 

constraints on economic resources, available maintenance crews, and restricted time 

intervals. Then various transformer condition-monitoring techniques, available monitoring 

information, and typical transformer failure modes as well as corresponding maintenance 

activities are presented. Several systematic methodologies of estimating instantaneous 

equipment failure probability based on equipment condition data are developed. They enable 
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quantitative evaluation of effectiveness of performing maintenance activities in terms of 

system cumulative risk reductions. 
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4 MULTIAGENT NEGOTIATION MODELS FOR POWER 

SYSTEM APPLICATIONS 

4.7 /nfrodwcf/on 

There are a wide range of power system decision problems, traditionally falling under 

one of the three categories of operations, maintenance, and planning, with the delineation 

between categories derived from the nature of the decision and the time horizon. Some of 

these decision problems include generation dispatching, fuel scheduling, control-room 

preventive and corrective actions, incident restoration, transmission service scheduling, unit 

commitment, transmission equipment maintenance, control system planning, and 

transmission upgrades. All of these share common attributes, among which are: 

» Resulting decisions have system-wide impact and therefore require significant 

coordination of information among the various decision-makers; 

* Higher system integrity is only achieved with greater allocation of financial resources; 

• The essential decision variables are inherently uncertain; 

• Uncertainty is reduced via acquisition and processing of information; 

- Important information tends to be spatially dispersed; 

• Complex and computationally intensive applications are required; 

As a result, decision-making support aids require modeling of multiple objectives, 

application of significant computational resources, and use of flexible data access capability. 

Mathematical programming has been and continues to be a mainstay for such decision 

problems. However, traditional optimization tools, by their very nature, assume the existence 

of a single and benevolent decision-maker that has centralized access to all information, and 

coordination between decision makers is embedded in the processes and is generally of no 

threat to individuals carrying out those processes. Such was the case in the traditionally 

regulated world where ownership of all facilities, access to all information, and all authority 
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for decision rested within the single umbrella of the vertically integrated utility company. 

With the advent of industry restructuring and associated organizational disaggregation, 

however, facility ownership is heavily fragmented, and information access and 

decision-making authority is quite limited for any one particular organization. Even more, the 

various organizations comprising the industry are not necessarily cooperative one with 

another; in fact, many portions of the restructured industry are intentionally organized to be 

competitive. Yet the need for coordinated decision remains, as it is essential to the 

operational integrity of the system. This necessitates a new paradigm to build upon and 

ultimately replace the centralized decision approach, enabling optimized decisions in an 

environment of highly distributed information and a multiplicity of competing stakeholders. 

The industry has attempted to retain decision-making ability using traditional 

optimization tools, but it has come at the expense of forming new, centralized and 

competitively neutral authorities such as independent system operators (ISOs) and reliability 

authorities (RAs) to coordinate system operations and issues related to system reliability. 

These organizations arbitrate those decisions where conflict between two or more parties 

may otherwise arise. For example, during operationally stressed conditions having excessive 

risk of load interruption, a centralized authority generally selects appropriate actions (e.g., 

emergency rating increase, load curtailment) in order to mitigate the risk. Another example is 

maintenance: given requests for simultaneous maintenance outage of multiple components 

(generators, transmission lines, and/or power transformers) such that network integrity is 

excessively compromised, a centralized authority generally determines the sequence and 

timing of the maintenance tasks. In both of these cases, a conflict (how much equipment 

rating should be increased or how much load should be curtailed in case 1 and which 

maintenance tasks to postpone in case 2) is settled by the arbitration of the central authority. 

The technology which motivates this work, multi-agent systems (MAS), may offer a viable 

alternative to this arrangement, or at least a useful complement, through the use of software 

agents equipped with negotiated decision-making capabilities operating within a MAS so as 
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to coordinate decision-making of competing stakeholders. In multi-agent negotiation 

systems, stakeholders, represented by agents, engage in negotiation, proposing and 

counter-proposing until an outcome is identified that is satisfactory to all. 

It is important to clarify terms at the beginning. A stakeholder represents a human 

individual or human organization that has interest in the stated decision making problem 

would be one of the decision-makers if allowed to participate. Later, we use the term player 

and party to more explicitly refer to a stakeholder involved in a human-to-human negotiation. 

On the other hand, an agent is first and foremost a software entity, second, one that satisfies 

the usual criteria for agency (e.g., a computer system situated in some environment capable 

of autonomous action to meet its design objectives [Wooldridge, 1999]), and third, for our 

purposes here, one that has the essential social ability of communicating (sending and 

receiving messages). Thus, a stakeholder may be represented by a party, or by an agent. A 

party always represents a stakeholder. Although an agent does not necessarily have to 

represent a stakeholder (there may exist "functional" agents, for example), we assume in this 

chapter that an agent does. In effect then, within the domain of this chapter, "agent" is the 

software encapsulation of "party." 

Here, a software agent, armed with a coded negotiation model, represents each 

stakeholder, and conflict resolution is achieved via inter-agent message exchange until 

agreement is reached. MAS is an essential enabling technology because it provides the 

necessary infrastructure in terms of model instantiation and maintenance together with the 

communication needs, including messaging, directory services, and communication protocols 

[Wooldridge, 1999]. 

The rest of this chapter is organized as follows. Section 4.2 reviews literature in terms 

of (a) negotiation theory and (b) computer-based negotiations. Section 4.3 describes two 

multiagent negotiation models. Section 4.4 discusses the issues of multiagent negotiation 

convergence and scalability. Section 4.5 describes the relationship between agent-based 

auction and negotiation. Section 4.6 concludes. 
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4.2 Negof/af/on Theory and/lgenfs; a Rey/ew 

Endowing agents with advanced social abilities, such as negotiation, for use within 

multiagent systems, has been of interest since the 1980's, but the study of negotiation as a 

fundamental form of human interaction has been ongoing throughout the 20* century, and an 

awareness of these developments is essential for understanding the recent and intimately 

related work in MANS. Section 4.2.1 focuses on literature from decision science, economics, 

and anthropology; more recent literature related to computer-based negotiation mechanisms 

is discussed in Section 4.2.2. 

4.2.1 Basics of Negotiation Theory 

Negotiation is a fundamental form of human interaction, and we see it in 

labour-management disputes, international diplomacy, governmental processes, business 

relations, and interpersonal relations. Despite its prevalence throughout all human history, it 

was not until the middle of the 20th century before development of a theory for negotiation 

was initiated. This effort had roots in a number of different disciplines, including decision 

science, economic bargaining theory, social psychology, political science, industrial 

sociology, and social anthropology [Gulliver, 1979]. We do not attempt a comprehensive 

literature review here but rather provide basic concepts on which we draw in instantiating 

negotiation models within agents. 

There are two sub-disciplines within decision science that need particular attention in 

order to do justice to the field of negotiation theory. The first is multi-criteria 

decision-making (MCDM). because it is MCDM that provides a number of different decision 

approaches for multi-criteria decision problems. Some of these approaches include 

[Chankong, 1983; Hobbs, 2000] weighting methods such as analytical hierarchy process, 

Electre IV, goal programming, evidential theory, and utility-based approaches, where we 

typically search for efficient solutions y*, i.e., those solutions for which there exist no other 



www.manaraa.com

62 

solutions that can outperform y' in all criteria. Of the various MCDM approaches, it is the 

utility-based approaches that have had particular influence on evolution of negotiation theory. 

A well-known and simple decision criterion is to choose the action which maximizes the 

expected value of benefit. Thus, if we can associate with each course of action A a set of 

outcomes characterized by their benefits cj, c?, ...cn and corresponding probabilities pi, 

p2,...pn, we desire to select the course of action that has the largest value of Zp,c,. Bernoulli 

[Bernoulli, 1738], and later von Neumann and Morgenstern [Neumann, 1944] and others 

[Keeney, 1976; Tapan, 1997; Fishburn, 1982; Fishburn, 1988] argued that rather than using 

expected value, the rational way for people to evaluate decision problems is on the basis of 

expected utility EU{A)=Ypi w(c,) where //(•) is a utility function that characterizes the 

decision-makers preferences with respect to the possible benefits of each outcome. 

The second sub-discipline that needs particular attention is the theory of competitive 

problems [Ackoff, 1968], characterized by decision scenarios where certain of the decision 

variables are controlled by two or more independent parties having different interests. This 

discipline, which has largely grown out of utility-based decision approaches, has formed the 

basis for much of the non-agent and agent-related work in negotiation theory. The most 

influential aspects of this work fall under the theory of games in which two or more players 

(i.e. parties) choose courses of action and in which the outcome is affected by the 

combination of choices taken collectively [Gulliver, 1979; Neumann, 1944; Keeney, 1976; 

Fishburn, 1982; Fishburn, 1988; Tapan, 1997; Ackoff, 1968]. A key assumption is that 

players behave rationally, where rational behavior is characterized by action selection, by 

each party, so as to maximize individual expected utility. Additional assumptions include (a) 

there is a fixed set of rules that specify what courses of action can be chosen; (b) there are 

well-defined end-states that terminate the game; (c) associated with each end-state are 

player-specific payoffs; (d) all players have perfect knowledge with regard to the rules, the 

range of outcomes, probabilities, and payoffs, and each player's preferences; (e) there is no 

interference or influence from the outside world. The central question addressed is: for a 



www.manaraa.com

63 

specified game, under assumptions a-e, what will be the utility vector on which the players 

will agree? The most well-known example of such a game is the so-called prisoners' 

dilemma whereby the district attorney has two robbers in different cells. If both confess, both 

get 8 years jail time; if neither confesses, both get 5 years, and if one confesses and the other 

does not, the confessor gets 2 years and the other 10. Game theory provides several different 

models for studying player decisions. 

A simple game-theoretic model is identified by Raiffa in [Raiffa, 1982], where it is 

assumed that by analysing the consequences of no agreement, each party can establish a 

threshold value to be used for decision. Define x* as the final-contract value, the sellers 

reservation price s that represents the very minimum price for which the seller will sell, the 

buyers reservation price b that represents the very maximum price for which the buyer will 

buy. Then the zone of agreement is the interval (.*, b), assuming $<b. If b<$, then agreement 

is not possible. The buyer's surplus is b-x*, the sellers surplus is x*-s, and both buyer and 

seller try to maximize their surplus. 

One limitation to game theory is that it is pre-occupied with outcome, discussed in 

terms of equilibria (e.g., Nash, perfect, dominant), rather than the process (or mechanism) 

used to arrive at that outcome. This point is central to the goal of automating multi-party 

decision-making because we need the capability of implementing the mechanism to achieve 

this goal. Thus, we turn to the closely related negotiation theory. 

There are at least six different mechanisms of reaching a collective decision among 

two or more parties, including persuading, educating, manipulating, coercing, appealing to an 

authority, and negotiation [Strauss, 1978]. Of these, the last two, arbitration and negotiation, 

are two distinctive forms of identifying agreements between two or more parties that have 

significantly more formality and structure. Arbitration provides a mechanism which selects a 

single outcome as the point of agreement between the parties. Judges often assume this role 

in legal disputes, so do certain kinds of power system decision-making authorities. In 

arbitration, the parties direct their communication towards a third party, but not to each other. 



www.manaraa.com

64 

Arbitration, with only a single decision-maker, is most effective when parties seek to agree 

over values, norms, and the assessment of facts. Negotiation, on the other hand, is the 

joint-decision process of forming and revising offers, by each involved party, whereby offers 

are made with the intention to converge to an agreement, without the presence of a 

third-party decision-maker. ([Gulliver, 1979] argues that this definition applies more 

appropriately to bargaining with a broader definition used for negotiation that includes the 

initiation and recognition of the motivating need, the process, the final outcome, and the 

execution of that outcome). In negotiation, the focus of communication is (are) the other 

party (parties). Generally, negotiation is performed as a result of a conflict or dispute between 

two or more parties, and the negotiation objective is to resolve the dispute. Negotiation is 

most effective in a situation of scarcity when parties seek the same resources without there 

being enough to satisfy both [Gulliver, 1979]. These types of negotiations have been 

characterized as either strident antagonist or cooperative antagonist [Raiffa, 1982]. The 

former is characterized by completely distrustful and malevolent (towards one another) 

parties, as would be the case when authorities negotiate with kidnappers or airline hijackers. 

The latter is characterized by entirely self-interested and disputing parties but ones that 

recognize and abide by whatever rules exist. A third type of negotiation is called fully 

cooperative [Raiffa, 1982], where the parties have different needs, values, and opinions, but 

they share information, expect total honesty, perform no strategic posturing, and think of 

themselves as a cohesive entity with intention to arrive at the best decision for the entity, as 

would be the case for a happily married couple. We are interested here in the two different 

levels of cooperative negotiations, since they better typify the various types of power system 

decisions problems. For example, a negotiation involving two transmission owners over 

equipment maintenance schedules is a good example of cooperative antagonists. A 

negotiation involving two ISOs sharing responsibility for operational integrity of different 

portions of the network in the same interconnection, over equipment maintenance schedules, 

is a good example of a fuHy^oc^erativeriegotmtmTi. Some negotiations ^re also 
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characterized by the presence of a mediator, where an impartial outsider has the role of 

helping the parties find a compromise solution. Although often useful, this refinement offers 

no fundamental change to negotiation models, and we do not address it further. 

There are at least two main phases to any negotiation. These are: 

1. Information exchange: 

• Pre-bargaining, including identification of the issues, establishing maximal limits to the 

issues, and agreeing on the rules 

• Issue iterations (offers and counteroffers) 

2. Arriving at the outcome: 

• convergence on a final contract value, 

• retention of the status quo (no change) via a walk-out by one party. 

Characterizing features of negotiations have been set forth in a number of works, 

including [Gulliver, 1979; Cross, 1969; Raiffa, 1982; Bartos, 1974J. Of these, a key attribute 

is whether the negotiation involves 2 parties (bilateral) or more (multi-lateral). Multi-party 

negotiations have complexity that significantly exceeds that of bilateral negotiations, as 

players may form any of a number of different coalitions. Even in the simplest of cases, the 

three-party negotiation (A, B, C), one must account for any of four scenarios: no coalition, or 

coalition of AB, AC, or BC. One obvious approach is to abandon negotiation altogether and 

utilize, for example, voting, some form of arbitration such as an auction, or perform the 

multi-party negotiation as a sequence of independent bilateral negotiations. Another approach, 

which maintains the essence of the multi-party negotiation, suggested in [Rubenstein, 1982] 

and described further in [Kraus, 2001], called Rubenstein's model of alternating offers, 

formulates the negotiation rules to explicitly disallow coalitions. Here, when one of the 

agents makes an offer, all other agents respond, with each agent accepting, rejecting, or 

cancelling (walking out). The negotiation terminates if all agents accept the offer (an 

agreement) or if one of them cancels. If the negotiation does not terminate, the negotiation 

proceeds to the nexttime period, another agent makes an offen and the process repeats. 
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Coalitions are prevented by disallowing inter-party communication. In addition, it is 

important to ensure that no party knows others' responses until the round is complete 

(otherwise parties have incentive to wait, to gain more information). The order in which 

parties can offer is randomized. In addition to avoiding coalitions, Rubenstein's model is also 

attractive because it is general; it works just as well for bilateral negotiations as it does for 

multi-lateral negotiations. 

A second key attribute is the number of issues, i.e., the substances over which the 

negotiation occurs; there may he one (single issue) or more (multi-issue). The ability to 

handle multi-issue negotiations lies in the way each party evaluates an offer. Some method of 

normalizing among different issues is required, and expected utility provides for this. Other 

features of most negotiation models are whether or not they represent the influence of time, 

learning, strategic behaviour, and a pre-bargaining phase. 

In reading the negotiation literature, it is important to recognize whether the author's 

perspective is descriptive or prescriptive. Descriptive models describe how negotiating 

parties actually behave, whereas prescriptive models prescribe how the parties should behave. 

For example, Gulliver in his well-known text [Gulliver, 1979] argues strongly against the use 

of utility theory in negotiation models because, he feels, it does not represent how people 

actually think (no one, he argues, actually decides based on quantification of their own and 

others' probabilities and preferences for various outcomes) and instead proposes two other 

models that capture the cycling and developmental features of negotiation, respectively. 

Considering Gulliver's criticism in the context of .MANS, one may argue that MANS 

provides a degree of information accessibility and modelling power that was not available 

when Gulliver wrote, so that many of the complexities of how humans decide may now be 

effectively addressed. However true, this response neglects to recognize that MANS is not 

concerned with describing how humans negotiate (although it may be useful to build into 

MANS certain features of how humans negotiate). Rather, MANS is concerned with 

hamansr witb^ecision-supportri.^r,^prescrfbing how humans-shonld decide. 
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Therefore, the implementation mechanism is important only insofar as it provides us with 

desirable outcomes. In this sense, then, MANS has the same function that mathematical 

programming has had, except that MANS accommodates the feature of distributed 

decision-making that is now prevalent in the electric power industry. 

4.2.2 Computer-based Negotiation Systems 

There is a large and growing body of literature on computer-based negotiation 

systems, including MANS. We limit ourselves here to three important texts, published in 

1994 [Rosenschein, 1994], 1999 [Huhns, 1999], and 2001 [Kraus, 2001] that well-capture the 

state of the art at those times, together with a survey of some very recent literature published 

in a journal dedicated to the topic [Holsapple, 1996; Eh tamo, 2001; Kersten, 2001; Tajima, 

2001; Weigand, 2003; Lomuscio, 2003] that can be conveniently found on-line at 

http://iournals.kluweronline.com/. 

Rosenschein and Zlotkin [Rosenschein, 1994] make a strong case that "game theory 

is the right tool in the right place for the design of automated interactions", arguing that 

despite its shortcomings in capturing human interactions, automated societies are perfectly 

amenable to the assumptions on which game theoretic models rest. They provide a list of 

attributes associated with machine interaction, including efficiency (outcomes should be 

Pareto Optimal), stability (no agent should have incentive to deviate from the agreed-upon 

available strategies), simplicity (low computational and communication requirements), 

distributedness (interaction rules should not require a centralized entity), and symmetry (the 

interaction mechanism should not arbitrarily favour one agent more than another). The work 

rests on the standard assumptions of game theory (rationality based on utility) together with a 

few more reminiscent of Rubenstein's model, including: (a) each negotiation is independent 

of past or future negotiations; (b) agent-specific utility calculations may be transformed into 

common "system" units; (c) all functionalities (abilities) are equally accessible to all agents; 

(d) public agreements are binding; ̂ e) no utility^ (in the form^ of money, Jor example) is 

http://iournals.kluweronline.com/
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explicitly transferred from one agent to another. They make the important clarification that 

their work is about design of machine negotiation protocols, where protocols are not about 

the low-level issue of how machines communicate (it is assumed that they do), but rather 

about a higher-level issue regarding the public rules by which machines come to agreement, 

such as Rubenstein's model described above. Thus, they proceed to identify different 

problem domains and specify various protocols appropriate for that domain. For example, the 

task-oriented domain is one in which an agent's activity can be defined in terms of a set of 

tasks that it has to achieve (in contrast to domains where agents are concerned with moving 

its environment from one state to another, or where agents assign a worth to states and select 

the best state in which to move). Given a protocol, the remaining attributes necessary to 

characterize a negotiation are the space of possible deals, the negotiation process, and the 

negotiation strategy. They utilize standard game theoretic models (e.g., Zeuthen's) to analyze 

the influence of different strategies on outcomes. 

Huhns and Stephens [Huhns, 1999J also emphasize the importance of protocols, and 

they distinguish between communication protocols (e.g., KQML, KIF) and "interaction" 

protocols. They classify the different interaction protocols into coordination, cooperation. 

contract net, blackboard systems, negotiation, and market mechanisms. Their overview of 

each provides a useful taxonomy for more broadly understanding negotiation protocols. 

Kraus [Kraus, 2001] clearly distinguishes efforts in the area of designing agent 

interaction (i.e., coordination and cooperation) from that of designing agent architecture. Her 

efforts, relating to the former, integrates game theory with economic techniques and artificial 

intelligence heuristics to develop a strategic-negotiation model patterned after that of 

Rubenstein under assumptions similar to those of Rosenschein and Zlotkin. The importance 

of this work is in its detailed treatment of illustrating the generality of the proposed 

negotiation model in a diverse array of applications, including negotiations about data 

allocation, resource allocation, task distribution, pollution reduction, and hostage crises. 

- Reference [Holsapple; 1996j proposes a theory of negotiation developed-with the 
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intent of understanding negotiation support systems as computer-based decision systems, 

predicated on the idea that there are 8 different features that must be identified in order for a 

negotiation to be properly understood. These features are issues to be negotiated, entities 

involved, the acceptance region of the entities in the space of issues, the current location of 

the entities within that space, the strategies and movements of the entities, and negotiation 

rules, and the level and nature of assistance from an intervener (arbitrator or mediator). A 

long list of computer-based support functionalities is provided for each of the features, and a 

classification framework is provided in terms of the kind of entity set for which the system is 

used (group/peer-to-peer or organization/hierarchical) and the nature of the system's 

participation in the negotiation (assistance/support or autonomous negotiator). Reference 

[Ehtamo, 2001] identifies 5 negotiation activities where mathematical modelling can provide 

prescriptive decision aid, and focuses on one of them, the search for agreement and 

improvements, in showing how it can be formalized as a MCDM gradient search problem or 

as a constraint proposal problem. Reference [Kersten, 2001] identifies characterizing features 

of distributive and integrative negotiations, terms first articulated by [Walton, 1965] to 

distinguish between "fixed-pie" negotiations where parties are inherently in conflict and 

compete over scarce resources such that when one party gets more, the other gets less 

(distributed) and win-win negotiations where some settlements can be better for both parties. 

Although integrative negotiations are generally multi-issued, they do not have to be as 

illustrated in the classic case where two sisters argue over an orange, one needing the juice 

and the other the peel. It is distributed as long as they do not know each other's needs but 

immediately becomes integrative when they do. Integrative negotiations generally lead to 

better solutions, and the authors conclude that auctions should be considered when 

distributive negotiation cannot be converted to integrative, but auctions are not applicable 

where it is possible to for parties to leam about one another to determine opportunities and 

establish relationships. This theme is extended in [Tajima, 2001] which purposes logrolling, 

an algorithmic method lor multi-issued integrative negotiatjons thai produces Paretooptimal 
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solutions through jointly improving exchange of issues such that loss in some issues is traded 

for gain in others resulting in overall gain for all parties. Reference [Weigand, 2003], in 

focusing on computer-based business-to-business negotiations, also distinguishes between 

distributive and integrative negotiations and their relation to auction as in [Kersten. 2001] 

and goes on to also compare norm and goal orientations in designing negotiation protocols. 

Reference [Lomuscio, 2003] further addresses automated negotiation in the context of 

e-commerce applications, providing a useful negotiation taxonomy that collectively 

incorporates many of the attributes discussed piecemeal in the literature to date. Within this 

taxonomy, the parameters of the negotiation space include: cardinality (number of agents, 

number of issues), agent characteristics (role, rationality, knowledge, strategy), environment 

(static or dynamic), goods (public or private), and parameters related to offers, information, 

and allocation. It also describes a number of proposed negotiation models and locates them in 

its taxonomy. 

4.3 Multiagent Negotiation Models 

We conceive of a society of agents organized as the electric power industry is 

organized, i.e., there are agents corresponding to load-serving entities, generation owners, 

transmission owners, and whatever centralized organizations that may exist such as 

Independent System Operaters (ISOs), reliability authorities, and power exchanges. 

Decisions are made as a result of different inter-agent negotiations. Our negotiation models 

may be applied to decisions with or without incorporation of uncertainty. We begin by 

describing the model in terms of bilateral, multi-issued negotiation, without uncertainty, as it 

both general and simple. By avoiding the need to model uncertainty, agent decisions are 

made based on assessment of wfzZzfy (or value), rather than expecW (or expected 

value). 
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4.3.1 Negotiation Model for Individual Rationality 

This is a basic model for two parties, many issues negotiations. As described in 

[Faratin, 1997], let a represents the negotiating agent in a multi-agent system 5! (i.e. 

ae {S}), and X, = {x,,%2,.be the set of issues about which agent a want to negotiate, 

each taking values in the range specified in the set: 

ro»gg(ZJ = {[min(%i),max(%i)],...,[min(zJ,max(^)]} (4.1) 

The set Xa is termed as negotiation set. The agent uses a non-decreasing or non-increasing 

scoring function V'(x) to score the value of each issue between 0 and 1, i.e.. for each 

negotiation issue X j  ( j  e {1,2,...,n } )  : 

Vj : [min(,xy ), max(xJ )] —> [0,1] (4.2) 

This enables the agent a to assign a value of issue x;- in the range of its acceptable values. 

For convenience, scores are kept in the interval [0, 1]. Such functions are sufficient to model 

transitive preference structures. If the agent prefers an outcome x'to x"for a single issue, 

then V(x') > V(x') ; if the agent is indifferent between two outcomes xz and x" then 

V(x") = V/(x"). For example, an agent can use the value function defined on the domain 

[min(x), max(x)] : 

V ( x )  -  [(x - min(x))/(max(x) - min(x))]i, k  >  0 (4.3) 

The next element of the model is using additive value functions to get the net value of 

a negotiation set. The agent assigns relative importance (weight) to each issue in the 

negotiation set; w is the relative importance of issue xj to the agent, and we assume that 

the weights are normalized: 



www.manaraa.com

72 

n 

^  W j  =  1 ,  W j  > 0  

M 

(4.4) 

Then the agent a's scoring function for the negotiation set X a  is defined as: 

n 

(4.5) 

The additive scoring function as defined above is the simplest multi-issued value 

function. However, to achieve flexibility in the negotiation, negotiating agents may change 

their ratings of the importance {wj 's) over time, allowing them adopt different negotiation 

tactics. For example, remaining time may become more important than imitation of the 

other's behaviors as it approaches the time by which an agreement must in place. 

One of the most important advantages of the above bilateral negotiation model is its 

simplicity and easy to be implemented. However, the main disadvantage of this model is that 

it does not count for the social influence of agent's actions and precludes the possibility of 

modeling any uncertainty. 

43.2 Embedding Agents with Social Rationality 

In this section, we develop an expected utility-based model for multiagent rational 

decision-making, which is capable of enabling each agent to balance between its social 

behavior and self-interest as well as dealing with uncertainty. 

As pointed out in [Vishwanathan, 2001], the value function based multiagent 

negotiation model oversimplifies the preference and attitude of the agent and precludes the 

possibility of modeling any uncertainty in the outcome of an action. However in practice, 

agents do face uncertainties in the consequences of their actions. While the expected utility 

theory has been widely adopted as the quintessential paradigm for decision-making in the 

face of uncertainty [Biswas, 1997; Fishbum, 1988], the predominant view of the agent's 

decision-making function has been solipsistic in nature and based upon the principle of 
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maximizing the individual expected utility [Hogg, 1997a] given the probability of reaching a 

desired state and the desirability of that state. Although this is intuitively and formally 

appealing, it lacks applicability in real systems consisting of multitude of interacting agents. 

Given the importance of power system integrity, when designing a system in which 

multiple agents need to interact (coordinate) in order to achieve both individual (e.g. 

maximize individual entity's revenues) and system (e.g. minimize the system risk level) 

goals, we hold that neither egoism nor altruism are the best means to achieve globally 

optimal system states, but rather a good combination of these two aspects of interaction can 

yield the best global results. Because of the inherent interdependences between agents, an 

agent's decision affects not only itself, but also other agents in the multiagent system 

environment. It is therefore important to equip the agents within a multiagent system with a 

mix of self-interest and social consciousness that allows them to value the performance of the 

entire society as well as their individual performance. An agent's decision should depend on 

not only its individual utilities, but also social utilities (utilities afforded to other agents in the 

MAS) of all possible actions while determining which action to perform. This is more 

appropriate for application to power systems where entity-represented agents are 

interdependent. If an agent places more emphasis on its individual utility, it is selfish in 

nature. On the other hand, an altruistic agent pays more attention to social utilities. A socially 

rational agent tries to maintain a balance between individual and social responsibilities [Hogg, 

1997b]. 

Due to its intuitive and formal treatment of making decisions from a set of 

alternatives under uncertainty, we use the aforementioned expected utilities of the agent's 

actions to describe a dynamic utility calculating framework, which provides agents with a 

more descriptive notion of choice within a multi-agent environment. In our MAS, a particular 

agent may work in a group with a small number of agents, a loose confederation with a larger 

number of agents and hardly at all with the remaining agents. Thus, the calculation of social 

utility (includes individual utility) can be further distinguished by differentiating between the 
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different social relationships in which an agent is engaged. To account for this, we define 

as the agents' Social Relationship Matrix in our MAS [Zhang, 2002]: 

# = 

1,1 '1,2 

%.2 

rn-1,1 rn-1,2 

rn,1 rn,2 

^2,m-l HZ,m 

rn-\,n-\ ^n-l.n 

rn,n-1 'n,n 

7=1 
(4.6) 

R  is a n x n  matrix ( n  is the number of agents within the multiagent system); each 

row or column corresponds to an agent. The value of r{ j indicates agent Vs attitude 

toward the social relationship between itself and agent j. This means that each agent can 

quantitatively weight all social relationships with respect to the influence of its possible 

actions within the multiagent system. While different agents may have different social 

perspectives, the value of rt j is not necessarily equal to n -. Therefore, in general the 

social relationship matrix R is not symmetric. Each agent can retrieve its own social 

relationship information from matrix R using its Identification Matrix I. For instance, for 

the k-th agent, its identification matrix is a vector in the form of: 

1  [ / }  1 * 2  •  •  *  i  j  "  '  4 ?  3  (4.7) 

where ,y = i, if and only if j = k ; otherwise j. = o• 

Supposing the k-th agent executes a possible action A, from its perspective, the 

utilities afforded to each agent in the multiagent system by A can be denoted as: 

k,\ 

k,k (4.8) 

k.n 
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where represents the individual utility to the t-th agent by that action, and all others 

are social utilities3. Then we can compute the expected utility for k-th agent if it carries out 

action A by the following equation: 

E[/(A) = 7* (4.9) 

By trying to maximize the above combined expected utility, agents can naturally take 

both individual and social utilities into the consideration of their decisions. The above 

mechanism equips the agents within multiagent systems with a mix of self-interest and social 

consciousness that allows them to rationally evaluate their individual performance over the 

entire society. In addition, by varying the corresponding values in the relationship matrix R 

(if i] j is set to zero, that means agent i either neglects the social relationship (i ï j ) 

between the two agents or totally removes its personal benefits from its decisions (i = j ).), 

each agent can dynamically determine the way that it combines the individual and social 

utilities of all possible actions in order to make a rational decision. 

4.4 Negof/af/on Convergence and Sca/ab///fy 

During each round of negotiation, an agent will have three choices: accept the offer, 

propose counter-offer, or drop out of the negotiation. In our negotiation protocol (which will 

be described in the next chapter), agent is designed to first evaluate the received offer 

(calculate its expected utility), then decide to accept (if the expected utility of the received 

offer is no less than its own expected utility) or counter offer or drop out. In our system, all 

agents are supposed to be rational (i.e., no malicious agent involved), that means agents are 

willing to make concession during negotiation in order to reach a global solution as long as 

its expected social utility is no less than that when it drops out of the negotiation. Thus, 

* In a cooperative environment, when agent k executes a possible action A, we assume that each agent would let agent k 
—know-its-ttt-Hity-effered-by^aetiyn^A^Fhis-is-simplerand-enable-agenHo-avoidrtnedeting-ether-agents-m-the^ystem: 
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dropping out of the negotiation is the last resort of the agent, which would lead to a 

negotiation failure. To prevent this from happening, we can impose a penalty on the agent's 

utility when an agent chooses to drop out of the negotiation. So, if an agent is not satisfied 

with the received offer, it will try to propose its counter-offer. Because our agents have not 

been equipped with learning capabilities during the negotiation, they just gradually increase 

or decrease their offers until coming into a global agreement. This coincides with the notion 

of Nash equilibrium [Kraus, 2001], i.e., each agent is trying to make an optimal choice, given 

the choices that other agents are making. Thus, there are several assumptions, which 

guarantees the convergence of our agent negotiation: (a) all negotiating agents are rational; 

(b) the time for negotiation is longer enough; (c) all negotiating agents are willing to make 

concessions; (d) the negotiation parameters can be changed smaller enough in each 

negotiation step; (e) all negotiating agents have enough computing power to finish evaluating 

offers and construction counter-offers in a timely manner. 

In this chapter, we have developed two multiagent negotiation models. As we see. 

they are capable of evaluating offers from multiple parties. In other words, they are able to 

support multilateral inter-agent negotiations. However, when the number of agents involved 

in negotiation grows very big (e.g., more than a dozen), the computation burden of each 

agent (because it needs to evaluate the received offers) will be increasing dramatically and 

thus it will slow the negotiation process. Being aware of this, we intend to illustrate the merit 

of multiagent negotiated decision-making without involving too much programming 

complexity. Thus our implementation of negotiation protocol and communication protocol 

(which will be described in the next chapter) is based on the most simple scenario, i.e., only 

two agents involved in a negotiation. So our multiagent system framework can facilitate 

bilateral, sequential inter-agent negotiations. However, it is not expected there is too much 

difficulty in enhancing the protocol implementation to accommodate multilateral inter-agent 

negotiations. One possible way of doing so is to adopt broadcast communication, where one 

agent cm' physically broadcast th& message To alltheagents^inthe^system.However 
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considering the confidentiality of the negotiation content, it is also desirable to implement a 

hybrid approach by using broadcast communication to convey non-sensitive information, 

e.g., negotiation purpose, involved parties and issues, identities and addresses of agents in the 

negotiation; and then use direct communication to exchange information of agents' offers 

during in the negotiation iteration. This is a mechanism very similar to an auction system 

where one auctioneer interacts with multiple bidders to determine one issue, e.g., price of a 

piece of goods in the auction. We will discuss the relationship between agent-based auction 

and negotiation in the next section. 

4.5 Compar/son between /kyenf-based 4ucf/on and Negof/af/on 

Agent-based auctions have been successfully applied in various power market-related 

applications [Richter, 1999; Lane, 2000], e.g., purchasing of active power and ancillary 

services. The most important and appealing features of these agent-based auction systems are 

process efficiency, case of use, and their ability to simultaneously manage very large 

numbers of bidders. Auctions also have very small information and coordination costs. 

Auctions focus on determining the value of products, e.g., price of MW power, through a 

process that is managed only by one side. 

In contrast, agent-based negotiation is a process that is managed by all the 

participants who cooperate to create values. Auctions mainly deal with known and 

well-defined objects (e.g., MW power), while negotiations are about defining these objects 

and modifying the participants' own perceptions and preferences. This allows for ill-defined 

and difficult issues to be negotiated (e.g., where and how much load should be curtailed in a 

stressed system condition; when and which maintenance activity should be performed if there 

is not enough resource to carry them out all). Thus, a negotiation is a process that is typically 

more costly than an auction in terms of time and effort required to achieve a solution from 

the participants. Moreover, since not all potential participants may be involved, negotiation is 

also pmne to inefficient so Wtion&4n-term&of market efficiency^ 
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However, these are not sufficient reasons for replacing negotiations with auctions. 

The two mechanisms are complementary, and negotiations are used in many situations in 

which auctions should not or cannot be used. As just mentioned, when an issue is not well 

defined and requires rich communication and proactive coordination among involved 

participants, agent-based negotiation will be more appropriate to use than simple auctions. 

Agent-based negotiations may also accommodate machine learning, construction of 

alternatives and modification of constraints. Thus the outcome of a negotiation is often more 

than the negotiated product or service, the parties may establish a lasting relationship and 

engage in other transactions afterwards. 

4.6 Summary 

In this chapter, various aspects of multiagent system negotiated decision-making: 

including basics of negotiation theory, negotiation models as well as negotiation convergence 

and scalability issues are described. The relationship between agent-based auction and 

negotiation is also discussed. Multiagent system technology is now mature enough to support 

negotiation as a decision paradigm among different autonomous entities. As such, it is very 

attractive for use in addressing a fundamental difficulty inherent to operating today's power 

systems where we see different stakeholders simultaneously required to compete and 

cooperate. 

In the next chapter, we will first develop a generic multiagent system platform that 

have most of the desiderata of software agents including inter-agent communication and 

handling inter-agent negotiations. Then a multiagent framework of integrated condition 

monitoring and maintenance scheduling for transmission equipment will be presented by 

extending the generic agents. We will also demonstrate the application of multiagent-based 

negotiated decision-making in transmission equipment maintenance scheduling. 
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5 A MAS FRAMEWORK OF INTEGRATED CONDITION 

MONITORING AND MAINTENANCE SCHEDULING SYSTEM 

5.1 /nfrodwcf/on 

The trend toward a deregulated electricity market has put the utilities under severe 

stress to reduce costs in order to be competitive in today's challenging business climate. One 

of the largest costs of an electric utility is the operation and maintenance of energy delivery 

systems. In this context, transmission maintenance has attracted considerable attention in the 

past decades. By performing efficient transmission maintenance practice, developing faults 

can be detected before costly outages and/or equipment failures occur, thus cost saving can 

be realized through a delay in the procurement of transmission equipment and reduction in 

maintenance effort. 

As described in Chapter 3, we have developed an innovative risk-based transmission 

maintenance scheduling optimization procedure. This framework provides the ability to 

centrally select and schedule maintenance tasks so as to utilize the available financial and 

human resources to maximize the risk-reduction within a given budget cycle. In order to 

solve this problem centrally, one needs the complete information on the objective function as 

well as all the constraints. From the arguments put forth, however, this is often impossible in 

practice. The restructuring of electric power industry has resulted in unbundling a multitude 

of services provided by different self-interested entities, such as power generators (GENCQs), 

transmission providers (TRANSCOs), distribution company (DISCOs), and a host of others. 

As these entities move toward restructured market-based operation, new decision-making 

paradigm must be prepared to evaluate the impact of competition. The choice must take into 

account coordination between these self-interested entities. As developed in Chapter 4, 

multiagent negotiated decision-making is a novel framework which can be built upon and 
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ultimately replace the centralized decision approach, enabling optimized decisions in an 

environment of highly distributed information and a multiplicity of competing entities. 

In this chapter, we intend to develop and implement a multiagent system framework, 

which provides the basis for displacing centralized optimization with negotiated 

decision-making for transmission maintenance scheduling. The rest of this chapter is 

organized as follows. First, a four-step MAS design methodology for constructing multiagent 

systems for power system applications is presented in section 5.2. Section 5.3 describes the 

implementation of a generic multiagent negotiation system. Based on this platform, in section 

5.4, two security-economy decision-making scenarios will be illustrated using multiagent 

negotiations. In section 5.5, the framework of multiagent-based transformer condition 

monitoring and maintenance scheduling system is presented. The scheme of system-wide 

transmission maintenance scheduling through multiagent negotiations is described in section 

5.6. Simulations of multiagent negotiation-based maintenance scheduling among several 

independent utilities are provided in section 5.7. Section 5.8 summaries. 

5.2 AWf/agenf System Mef&odo/ogy 

MAS is a relatively new field and as yet has not converged on a universally accepted 

design methodology. Several MAS paradigms and methodologies have been proposed in the 

literature, e.g. MASSIVE [Lind, 2001], DESIRE [Brazier, 1997], Gai a [Wooldridge, 2000] 

and MaSE [Wood, 2000], based on different notions of agents and multi-agent organizations. 

We feel it is appropriate to use a 4-stage methodology for constructing MAS for power 

systems applications: Amzfya;.?, Design, Tmp/emgfzAzfKm, Dgpfoymgmf, as shown in Figure 

5-1. 

5.2.1 Analysis: Environment and Tasks 

This is the first stage which identifies the application domain, overall problem, 
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actions required of the agents, and operational (e.g., security) and performance constraints. 

Task decomposition is performed to determine what the system is supposed to do (and not 

how it is supposed to do it) to achieve overall MAS objectives. 

5.2.2 Design: Roles, Interactions, and Organizations 

Having decomposed the problem into constituent tasks, the next stage is to identify 

the agents required to effectively perform the tasks in terms of (a) definition of agent roles 

(data, functional, decision, mediator, facilitator) linking domain-dependent application 

features to appropriate agent technology, and specifying services to be associated with each 

agent; (b) identifying the types of interactions needed between different agents in order to 

achieve individual or joint goals; and (c) specifying the organization of the different agents in 

terms of a society of agents that is consistent with the various defined roles and that achieves 

the overall objectives. 

5.2.3 Implementation: Architecture 

A key requirement for implementing a MAS is the selection of system and agent 

architectures. System architecture includes such aspects as multi-agent organization (e.g., 

hierarchical versus flat), agent management, and coordination mechanisms, including such 

things as directory services (or yellow pages) that enable each agent to know the capabilities 

and location of other agents, and the Agent Communication Language (ACL) that provides 

I 

Figure 5-1 : MAS Design Methodology 



www.manaraa.com

82 

the common basis for inter-agent communication. The most common ACLs include 

Knowledge Query and Manipulation Language (KQML) [Genereth. 1994] and Foundation 

for Intelligent Physical Agents (FIPA) ACL [FTPA], There are a number of available agent 

platforms for implementing MAS including Voyager [Voyager], Concordia [Concordia], 

Aglets [Aglets] and SMART [Wong, 2001]. Based on an agent platform, individual agents 

can be extended with abilities to process specific messages and communicate with other 

agents. In order to enable inter-agent communication, besides ACL, it is also essential to 

define an appropriate ontology, or vocabulary, for the MAS that specify all possible message 

contents. In addition, some kind of inter-agent coordination strategy must be in place. 

A broad range of architectures for agents (including reactive, deliberative, adaptive, 

communicative) have been studied in artificial intelligence. Properties that distinguish the 

various agent architectures include reasoning capabilities, resource limitations, control flow, 

knowledge handling, autonomy, user interaction, temporal context, and decision making. 

5.2.4 Deployment 

Here, actual agents are instantiated to cooperatively solve the problem. Testing is 

done to validate the model. 

5.3 Mu/f/apenf System /mp/emenfaf/on 

Based on previously described MAS methodology, we intend to first develop generic 

agents that have most of the desiderata of software agents, including persistent interaction 

with environment, composing and interpreting messages, handling multiple conversations 

and so on. Then software agents with specific functionalities can be implemented by 

extending the generic agent. We use object-oriented software design method to develop 

agents representing different power system entities, e.g., suppliers, transmission owners, 

system operators, and delivery companies. 

We have built a platform independent, object-oriented software infrastructure, called 
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MASPmver [Vishwanathan, 2001] on top of the commercial distributed computing platform 

Voyager ORB [Voyager] to instantiate agents and multiagent systems for eliciting coordinated 

and negotiated decision-making from power system decision-makers. Voyager supports 

dynamic proxy generation, naming services, synchronous and asynchronous messaging, 

management of multiple concurrent tasks and multiple conversation protocols, and 

preceptors for accessing local and remote percept sources for distributed MAS. 

The developed software can be used to instantiate generic software agent that has 

most of the functionalities of software agent, including managing multiple tasks, managing 

multiple conversation threads, perceptors for accessing local and remote environmental 

sources. The software platform is organized into the following eight packages: 

• edit, iastate.manpower.agents: This package contains the basic and collaborative agent 

classes which can be used to implement agents with different functionalities together with 

other supporting classes. 

edu.iastate.maspower.agents.gui: This package contains the classes for the graphical user 

interface (GUI) for the agent. 

edu.iastate.tnaspower.agents.task: Activities carried out by the agent are abstracted as 

"tasks". Such tasks are instantiated by inheriting the functionalities provided by classes in 

this package. 

• edu. iastate. maspower. ad : This package contains the functionalities for enabling 

communication between different agents using inter-agent messages following an agent 

communication language. 

edu. iastate. maspower. acl. conversation s : This package contains functionalities for 

managing multiagent conversations including enforcing conversation protocols. 

" manpower. and wzjfafg. maspower. mas. These packages 

contain the classes and interfaces for enabling the existence of the multiagent system 

including directory services and distributed computing support for inter-agent messaging. 
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" afw. ioa&zfe. maspower. negofiafzofza: This package contains classes for agents to negotiate 

with other agents. 

Individual agents may reside on any CPU within a network as long as the CPU is 

running MASPmver on top of Voyager. The distributed computing components of MASfower 

are engineered by using the functionalities provided by Voyager ORB. 

We extended the federated directory service implementation of Voyager ORB to 

provide the ability to maintain names of currently active agents together with keywords to 

identify the agent's area of expertise. MASPower stores the directory location as an XML 

document, read by every newly created agent, to avoid the need to recompile a program 

every time the directory location is changed. 

Agent communication is performed using inter-agent messaging with message 

interpretation being private to each agent, providing the ability to interpret the same message 

differently under different agent internal states. Structural elements of an inter-agent message 

are per F1PA-2000 recommendations [FIPA]. Multiagent conversations are managed using 

thread, tagged by unique conversation identifiers generated by the agent initiating the 

conversation. Conversation protocols were designed as finite state machines (FSM) 

following the COOL notations [Barbuceanu, .1999]. The FSM for a conversation protocol is 

characterized by a ST ART state, END state, FAIL state, and a variable number of 

intermediate states. Transition between one state to another occurs by either sending or 

receiving a message with a particular performative. For example, the FIPA recommendation 

for the contract net protocol [Smith, 1980; Smith, 1983] can be encoded as the FSM in Figure 

5-2. This protocol is useful for automated contracts in environments where all agents 

cooperatively work toward the same goal. The manager proposes a task, announces it, and 

potential contractors evaluate it (together with other announcements from other managers) 

and then submit bids on the tasks for which they are able to perform. 
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Reject-
proposal / 

/ Refuse 

/ Accept-
proposal 

Propose / 

/ Inform /Failure 

FAIL SUCCESS 

Figure 5-2: FSM of Contract Net Protocol 

The FSM to be used by an agent depends on the role that the agent is playing in the 

conversation: the FSM in Figure 5-2 is used by the agent responding to the initiating agent. 

The initiating agent uses the same FSM except that "send" and "receive" labels are 

interchanged for all transitions. 

Each activity that can be undertaken by an agent in its lifetime is organized as tasks. 

Whenever a new task instance is created, the object registers with the agent's task manager. A 

key attribute of MASPower is that many tasks can run concurrently within the agent. 

An agent that initiates the negotiation process is termed initiator, and one or more 

responding agents are termed responder(s). The FSM of our implemented negotiation 

protocol is illustrated in Figure 5-3. 

It is important to keep in mind that the above multiagent system implementation as 

well as the multiagent negotiation models developed in Chapter 4, are all general and not 

confined to any particular application. The rationale behind this approach is that instead of 

only focusing on a particular decision-making context, we intend to first develop this general 

framework and then use some decision-making scenarios as specific instances of this 

framework. We will present some example applications of MAS negotiated decision-making 
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in the following sections of this chapter, including security-economy decision-making in 

stressed power system and system-wide maintenance scheduling problem. 

SUCCESSS 

Agree / 
/ Agree 

Propose / 

Propose / / Propose 
START 

/ Cancel 
Cancel / 

FAIL 

Figure 5-3: Negotiation Protocol 

5.4 Illustrative System Security-Economy Decision-makings 

During stressed operating conditions, there is an excessive risk of system collapse and 

massive load interruption. Thus coordination among different involved entities, such as 

transmission owners (TOs), load serving entities (LSEs), independent system operator (ISO) 

is needed to take the most appropriate actions to mitigate the problem. In this section we 

present two illustrative security-economy negotiated decision-making scenarios, employing 

the two negotiation models described in section 4.3 respectively within our multiagent 

system. 

In simulation one, we use the IEEE Reliability Test System [IEEE, 1999] under 

stressed operating conditions, with the following decision required: Deferring fry /zow mwc/z 

fo operafe a framsmz'sszorz czrrwzf z% excess of zfs %fe%fz/zed rafzrzg? In the traditional vertically 

integrated energy industry, this decision was made by a single organization, the utility 

company, because it both owned and operated the transmission system. However these two 

functions are now separated, with Ae^ISO responsible for system operations and 
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implementing the market based dispatch insofar as system security limits allow. A 

transmission owner is responsible for the physical integrity of the circuit, including the 

specification of the circuit rating, and in addition, the transmission owner receives revenues 

for use of the circuit in proportion to the flow. We have simulated a negotiation between the 

ISO-Agent and the Transco-Agent over the increase in circuit rating and pro-rata 

compensation for the transmission service. Both agents employ the value-function based 

negotiation model as discussed in section 4.3.1. The negotiation issues are circuit rating 

increase and monetary compensation. The resources used by the agents are equipment life 

(only for the Transco), money, and negotiation time. Figure 5-4 illustrates the progress of the 

negotiation. The negotiation concluded after 54 iterations, taking 282 seconds, when the ISO 

accepts an offer of 4.62 MW rating increase at $13.13 for each MW of transmission service. 

A second simulation (not shown) repeated the first, except that the negotiation time resource 

for the Transco was decreased from 600 sec to 240 seconds, resulting in agreement after 42 

iterations taking 225 seconds, at 5.54 MW rating increase at $11.76 for each MW of 

transmission service. 

Si nidation 1: ISO Agent Simulation 1: Transco Agent 

Propos 
_ 0.6 

0.4 0.4 

0.2 
0.2 

Offers 
51 

Iterations 
Iterations 

Figure 5-4: Negotiation between ISO-Agent and Transco-Agent 

We also completed another system security related inter-agent negotiation simulation 

using the rational negotiation model as described in section 4.3.2. In order to construct a 

security-constrained case, we first apply several modifications to the IEEE Reliability Test 
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System [IEEE, 1999]: 

• Line 11-13 is removed; 

• Set terminal voltage of the Bus 23 generator to 1.0l2pu; 

Shift 480 MW of load from buses 14, 15, 19, 20 to bus 13; (Bus 14: 40 MW, Bus 15: 190 

MW, Bus 19: 150 MW, Bus 20: 100 MW) 

" Add generation capacity at buses 1 (100 MW unit), 7 (100 MW unit), 15 (100 MW unit, 

155 MW unit), 23 (155 MW unit). 

« Change the outage rate of Line 12-23, 13-23, 11-14 to 0.1 1,5, 10, respectively, so their 

outage rates have significant difference. 

Figure 5-5: Modified RTS-96 System 

Because of large amount of load shifted to bus 13, the modified test system has a 

| bus!6 

1230 kv 

'/W\ AAA 

Area 1: bus 1 - 10. 
Area 2: bus 12, 13, 23. 
Area 3: the rest buses 
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severe overflow problem in line 16 (from bus 23 to bus 13), which results in system high 

overload risk (23.0665). Traditionally this problem will be resolved solely by the system 

operator without coordinating with other entities in the system. But under the deregulated 

environment, all the entities in power system now become autonomous and independent. 

Thus resolving this kind of problem now needs the coordination of all related entities instead 

of mandatory actions. The MAS paradigm of distributed decision support through inter-agent 

negotiation is an ideal solution approach for this problem. Below we will illustrate this 

through the negotiation of entity-representing agents using the socially rational negotiation 

model based on expected utility. 

In order to simplify the negotiation process, we will just focus on the overload risk of 

the test system. Representing the independent system operator, the ISO-Agent is in charge of 

the overall system security and periodically examines the system risk values calculated by 

RBSA-Agent. When it detects the high system overload risk, it immediately initiates 

negotiation with the Load-Agent representing the load entity at bus 13. The negotiation 

issues include load curtailment by the Load-Agent, and compensating money offered by the 

ISO-Agent. During the negotiation, the Load-Agent has to analyze the tradeoff between the 

monetary compensation proposed by ISO-Agent and the expected loss due to its load 

curtailment. Each agent fist evaluate the received offer (calculate its expected utility), then 

decide to accept (if the expected utility of the received offer is larger than its own expected 

utility) or counteroffer or reject. Here in our simulation, we assume that agents should have 

common interest in reaching an agreement over the negotiation issues, so there is no brutal 

rejection. If an agent will not accept the received offer, it will try to propose its counteroffer. 

They gradually increase or decrease its offer until both of them come into an agreement. 

The simulation results are shown in Figure 5-6. The system overload risk 

significantly decreases as the Load-Agent agrees to shed more and more load at bus 13, and 

eventually when the two agents come to agreement that the Load-agent sheds 700MW load, 

the system overload risk drops to zero. The expected utilities of the two agents both mainly 
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increase as the negotiation processes. This is because both agents use socially rational 

negotiation models: the system security level influences the ISO-Agent as well as the 

Load-Agent. Figure 5-6 also illustrates how the compensated money evolves during the 

negotiation process, finally resulting in agreement between the two agents on $58,974 for 

700MWh load curtailment. 

Simulation 2 

Load Curtailment (MW) 

- ISO-Agent —X— Load-Agent 

0) 0.4 

X" 
UJ 0.2 

0 200 400 600 800 

Load Curtailment (MW) 

-ISO-Agent Pay 
X - Load-Agent Demand 

Load Curtailment (MW) 

Figure 5-6: Negotiation Between ISO and Load Agents 

The above two simulations are illustrative examples of resolving system stressed 

scenarios through negotiations between several agent-represented entities. The MAS 

paradigm of distributed decision support through inter-agent negotiation facilitates the 

coordination among different independent entities to resolve these type of problems, once 

resolved solely by the system operator without coordinating with other entities in the system. 

This is an innovative paradigm to build upon and ultimately replace the centralized decision 

approachrenabling more satisfactory solution to all involved parties. 
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5.5 Afu/f/agenf-based Transformer Cond/f/on Mon/formp and 

Mamfenance Sysfem 

We have developed a platform-independent, object-oriented software infrastructure, 

MASPmver, as described in Section 5.3. It could be used to rapidly instantiate software 

agents and multiagent systems for eliciting complex information processing and negotiated 

decision-making scenarios. Based on this software agent infrastructure, we further implement 

a multiagent based condition monitoring and maintenance system (MCMMS) for power 

transformer. The framework of MCMMS is shown in Figure 5-7. 

Various Monitoring 
Sensors Installed 

on Equipment 

Raw Condition 
Monitoring Data 
at Substations 

I 

Communication 
Agents 

:=s 

I MAS Supporting 

| Infrastructure 

Operating Conditions 
Diagnostic Agent 

Dissolved Gas-in-oil 
Analysis Agent 

Alarm 
Agent 

I i|> Alert Operating 
Personnel 

Partial Discharge 
Diagnostic Agent 

Thermal 
Diagnostic Agent 
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Moisture-in-oil 
Diagnostic Agent 

Acoustic 
Diagnostic Agent 

ISO-Agent 

I 
1 
1 ,  Maintenance 

-+4> 
I 

Strategy 

I 

Figure 5-7: Multiagent based Condition Monitoring and Maintenance System (MCMMS) 

5.5.1 Model of Communication Agent 

Large amounts of equipment monitoring data are gathered at monitoring equipment, 

operational hardware, software systems and databases that are not easily accessed or 
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generally available. Based the application described in [Reinoso-CastiUo, 2002], the 

intelligent communication agent is capable of accessing distributed, heterogeneous, 

proprietary data sources, and extracting all related transformer condition monitoring 

information. It can also communicate with diagnostic agents using ACL. The model of 

communication agent is shown in Figure 5-8. 

Coud. Monitoring 
Data Source 1 

ACL 

Queiy 
Cond. Monitoring 

Data Source N , 

Figure 5-8: Model of Communication Agent 

5.5.2 Model of Diagnostic Agent 

The model of diagnostic agent is shown in Figure 5-9. Diagnostic agents possess 

knowledge of the necessary monitoring techniques as previously described. Based on the 

queried monitoring data, diagnostic agents can cooperatively perform diagnostic functions. 

Because monitoring systems continuously collect real-time data, the amount of data is 

enormous, and the diagnosis can be data and computation intensive. MAS architecture 

enables diagnostic agents to cooperatively detect abnormal situations and identify any-

possible transformer failure modes as summarized in Appendix A. Once certain predefined 

operating thresholds have been violated, the alarm agent alerts the operating personnel at a 

central control room. 
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Figure 5-9: Model of Diagnostic Agent 

5.5.3 Model of Maintenance Agent 

The model of maintenance agent is shown in Figure 5-10. Based on detected possible 

failure modes, the maintenance agent will recommend appropriate maintenance activities as 

listed in Appendix A for the equipment. And the instantaneous transmission equipment 

failure probabilities will also be estimated based on recently acquired condition monitoring 

information, using the methods described in Section 3.5. Then each maintenance agent, 

representing independent utility, performs the centralized maintenance scheduling 

optimization in its own territory, using the Integrated Maintenance Selector and Scheduler 

(IMSS) as described in [Jiang, 2003a]. They can further be engaged in inter-agent 

negotiations with other maintenance agents representing different utilities to reach an 

acceptable system-wide maintenance schedule. 

IMSS 

Diagnosed 
Possible 
Failure 

Mode(s) 

Failure 
Probability 
Estimates 

Inter-agent 

Negotiations 

Proposed 
Maintenance 

Activities 

Sub-system 
Maintenance 

Schedules 

Instantaneous 
Failure 

Probabilities 

Figure 5-10: Model of Maintenance Agents 
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5.6 Sysfem-w/de /Wa/nfenance Sc/?edu//ng trough MAS 

/Vepof/af/ons 

In Section 3.2, we have described a system-wide centralized maintenance scheduling 

optimization procedure by maximizing cumulative risk reduction. In principle, one may 

consider to solve this large-scale mathematical problem centrally using currently available 

computing power and solution techniques [Jiang, 2003a; Jiang, 2003b], However, with recent 

organizational disaggregation and functional balkanization in the industry, facility ownership 

is heavily fragmented, and information access and decision-making authority is quite limited 

for any one particular organization. Decision problems, such as maintenance scheduling, 

once solved using centralized optimization algorithms are now more difficult due to 

distributed information and the multiplicity of competing stakeholders. We have developed a 

multiagent negotiation system [McCalley, 2003a] in which software agents, armed with 

coded negotiation models, represent different decision-makers, and conflict resolution is 

achieved via inter-agent message exchange until agreement is reached. It is more appropriate 

to employ multiagent negotiation to solve this maintenance-scheduling problem. The 

multiagent socially rational negotiation model developed in Section 4.3.2 is suitable in this 

situation, because maintenance activities would not only save cost for each utility (by 

avoiding costly equipment failures and extend the life of electrical equipment), but also 

significantly improve reliability of the entire system. 

Different maintenance software agents are coded to represent different independent 

utilities. Each maintenance agent can perform the centralized maintenance scheduling 

optimization as described in Section 3.2 in its own footprint first, and comes up with its own 

maintenance schedule. Agents communicate with each other using communication protocol 

specified in the design of our multi-agent system platform as described in Section 5.3. 

Conflicts among the maintenance schedules of different utilities, e.g., more than one utility 
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want to schedule a major power transformer maintenance during the same time period, are 

then resolved via inter-agent negotiations according to the overall system security constraints 

imposed by the ISO-Agent. The scheme is shown in Figure 5-11. 

Utility 1 
Negotiated 
Coordination 

/ 

/ 

Utility 2 \ 

S 

: ISO-Agent vU^SêX> : Maintenance Agent 

Figure 5-11 : Maintenance Scheduling through MAS Negotiations 

5.7 Sysfem Ma/nfenance Schedw//ng S/mu/af/ons f/wroug/i 

AfuWagenf Afegof/af/on 

To illustrate our agent negotiation-based method for maintenance scheduling, we use 

a model of an actual electric power system but with hypothetical maintenance activities. The 

system has 36 generators, 566 buses, 561 transmission lines and 115 transformers [McCalley, 

2003b]. We divide the entire system into three subsystems, and stipulate that each of them 

belongs to a different utility. And three different software agents are coded to represent the 

three different utilities respectively. In the following simulations, we apply the multi-agent 

negotiation in transformer maintenance scheduling. The three subsystems, A, B and C, first 

use the centralized optimization method [Jiang, 2003a; McCalley, 2003b] to schedule their 

proposed power transformer maintenance activities individually. The resulted maintenance 
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schedules (only for major transformer maintenance) of the three individual subsystems are 

listed in Table 5-1. 

Table 5-1: Transmission Maintenance Schedules for Three Sub-systems 

Periods 
(week) 

XFMR major XFMR major XFMR major 
Periods 
(week) 

maintenance schedule maintenance schedule maintenance schedule 
Periods 
(week) 

for sub-system A for sub-system B for sub-system C 

1-3 Xrmj5 Xrmj 13 Xrmj 16 

4-6 Xnnj7 Xrmj 15 Xrmj 19 

7-9 Xrmj 6 Xrmj 14 Xrmj 17 

10-12 Xrmj2 Xrmj 9 Xrmj 18 

13-15 Xrmj4 Xrmj 11 Xrmj 20 

16-18 Xrmj 1 Xrmj 12 

19-21 Xrmj3 Xrmj 8 

22-24 XrmilO 

25-52 
# schedules 7 8 5 

CRR 0.162061 0.283093 0.129787 

In our simulations, we assume that there is a security constraints posed by the 

ISO-Agent: only one major transformer maintenance is allowed during the same time period 

in the entire system. From the above maintenance schedules, we can observe that there are 

many conflicts among the three individual maintenance schedules of the sub-systems. We 

need to resolve these conflicts through coordination of these three maintenance agents. For 

these agents, which are responsible for the corresponding sub-systems' maintenance 

scheduling, they will initiate negotiations among themselves regarding the sequence of 

maintenance activities they take. The negotiation issue is who will take this maintenance spot. 

The resources used by the negotiating agents include system cumulative risk reduction (CRR), 

and compensated money (CM). Each maintenance agent employs a linear utility function in 

the form of: 

U, = * CKRi + ki2 * CMt ^ k(j — 1 , kg > 0 , j = 1,2 
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Each maintenance agent may also have different social prospective: i.e., have different 's 

as described in Section 4.3.2. 

Maintenance Schedul ing Sim ulat ion 

Negotiation between A and B 
Expected U tility offered by B 

m Proposed U tility of A 

— E x p e c t e d  U t i l i t y  o f f e r e d  B y  A  

-X—— Proposed Utility of B 

Negotiation Iterations 

Negotiation between A and C 

—dk Expected Utility offered by C 

€> Expected Utility offered by A 

- Proposed Utility of A 

-Proposed Utility of C 

3 

I 

S ft f n 'AAAAAAaA 

Negotiation Iterations 

Negotiation between B and C 

—A Expected U tility offered by C 

-—m Proposed U tility of B 

—'O— Expected Utility offered by B 

—X Proposed Utility of C 
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I 

Negotiation Iterations 
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-e— A to B —B— B to A - A — A to C 

_l C to A —— B to C —©— C to B 
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I -  1 0 0  

Negotiation Iterations 

Figure 5-12: Maintenance Scheduling Simulation through Negotiation 

At every round of negotiation, in order to determine who will take the mamfe/urnce 

spot, each maintenance agent first evaluates the expected utility of its opponent's offer. If this 

expected utility is no less than the utility of its own proposal, the agent will accept the offer; 

otherwise, it will try to counteroffer. A bilateral sequential negotiation among the three 

maintenance agents, A, B and C, is illustrated in Figure 5-12. In this round of negotiation, B 
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accepts A's offer with the agreement of 1140 $ monetary compensation from A in exchange 

of scheduling A's maintenance work ahead of B's. Similarly, B accepts C's offer with the 

agreement of 1260 $ monetary compensation in exchange of scheduling C's maintenance 

work ahead of B's; C accepts A's offer with the agreement of 1910 $ monetary compensation 

in exchange of scheduling A's maintenance work ahead of C's. 

In our simulation scenario 1, we first consider that all the three maintenance agents 

are totally socially rational, i.e., social utilities are equivalent to their own individual utilities 

when all rtj's are equal to 1/3. The simulation result is shown in Table 5-2. The total number 

of schedules for the entire system is 17. The numbers of maintenance schedules for the three 

subsystems are 6, 8, and 3 respectively. And the system cumulative risk reduction is 0.4013. 

Table 5-2: Transformer Maintenance Scheduling Simulation 1 

Week 
XFMR major maintenance 

Week 
XFMR NO. Sub-system CRR 

1-3 Xrmj 15 B 0.050577 

4-6 Xrmj 13 B 0.046665 

7-9 Xrmj 14 B 0.042179 

10-12 Xrmj 16 C 0.040515 

13-15 Xrmj9 B 0.032109 

16-18 Xrmj 12 B 0.030683 

19-21 Xrmj 11 B 0.029439 

22-24 Xrmj 10 B 0.024004 

25-27 Xrmj 8 B 0.021771 

28-30 Xrmj7 A 0.020942 

31-33 Xrmj 5 A 0.020365 

34-36 Xrmj 6 A 0.017662 

37-39 Xrmj 2 A 0.010409 

40-42 Xrmjl A 0.006546 

43-45 Xrmj 19 C 0.004381 

46-48 Xrmj4 A 0.001998 

49-51 Xrmjl8 C 0.001037 

52 
# schedules 17 

Total CRR _ÛL4013 
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In our simulation scenario 2, maintenance agent A is more selfish: e.g., =0.5, 

rI2 = rl3 = 0.25 . And the other two agents are still rational, i.e., r21 = r22 = r23 = 1/3 , 

r31 = r32 = r33 =1/3 . Clearly, the negotiation result will be in favor of maintenance agent A. 

The simulation result is shown in Table 5-3. The total number of maintenance schedules for 

the entire system is 17. The numbers of maintenance schedules for the three subsystems are 8, 

8, and 1 respectively. And the system cumulative risk reduction is 0.3960. 

Table 5-3: Transformer Maintenance Scheduling Simulation 2 

Week 
XFMR major maintenance 

Week 
XFMR NO. Sub-system CRR 

1-3 Xrmjl5 B 0.050577 

4-6 Xrmjl3 B 0.046665 

7-9 Xrmjl4 B 0.042179 

10-12 Xrmj 7 A 0.025854 

13-15 Xrmjl6 C 0.039058 

16-18 Xrmj 12 B 0.030683 

19-21 Xrmj 5 A 0.023595 

22-24 Xrmj 9 B 0.023387 

25-27 Xrmjll B 0.027039 

28-30 Xrmj 6 A 0.020578 

31-33 Xrmj 10 B 0.023525 

34-36 Xrmj 2 A 0.014133 

37-39 Xrmj 8 B 0.013038 

40-42 Xrmj 5 A 0.007142 

43^5 Xrmj 6 A 0.005457 

46-48 Xrmj 2 A 0.002004 

49-51 Xrmj4 A 0.001039 

52 
#schedules 17 

Total CRR 0.3960 

In our simulation scenario 3, maintenance agent B is more unselfish: e.g., =0.2, 

7^1 = = 0.4. And the other two agents are still socially rational, i.e., = -Hs =1/3, 
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^ =1/3. Clearly, the negotiation result will be in favor of maintenance agent 1 

and 3. The simulation result is shown in Table 5-4. The total number of maintenance 

schedules for the entire system is 17. The numbers of maintenance schedules for the three 

subsystems are 7, 5, and 5 respectively. And the system cumulative risk reduction is 0.3494. 

Table 5-4: Transformer Maintenance Scheduling Simulation 3 

Week 
XFMR major maintenance 

Week 
XFMR NO. Sub-system CRR 

1-3 Xrmjl5 B 0.050577 

4-6 Xrmjl6 C 0.043825 

7-9 Xrmjl5 B 0.047312 

10-12 Xrmj7 A 0.026559 
13-15 Xrmj 6 A 0.025270 
16-18 Xrmj 5 A 0.024579 
19-21 Xrmjl A 0.019173 

22-24 Xrmj 2 A 0.017854 

25-27 Xrmjl9 C 0.017055 

28-30 Xrmj 18 C 0.016416 
31-33 Xrmj 4 A 0.015619 

34-36 Xrmj 3 A 0.014453 

37-39 Xrmj 17 C 0.010309 

40^2 Xrmj20 C 0.006286 

43-45 Xrmj 13 B 0.008611 
46-48 Xrmjl4 B 0.003889 
49-51 Xrmj9 B 0.001646 

52 

# schedules 17 

Total CRR 0.3494 

We also have done a simulation for entire system maintenance scheduling using the 

centralized optimization method as described in [Jiang, 2003b], The simulation result is 

shown in Table 5-5. 
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Table 5-5: Transformer Maintenance Scheduling Simulation 4 

Week 
XFMR major maintenance 

Week 
XFMR NO. Sub-system CRR 

1-3 Xrmj 15 B 0.050577 

4-6 Xrmj 13 B 0.046665 

7-9 Xrmj 14 B 0.042179 

10-12 Xrmj 16 C 0.040515 

13-15 Xrmj9 B 0.032109 

16-18 Xrmj 12 B 0.030683 

19-21 Xrmj 11 B 0.029439 

22-24 Xrmj 10 B 0.024004 

25-27 Xrmj 8 B 0.021771 

28-30 Xrmj 7 A 0.020942 

31-33 Xrmj 5 A 0.020365 

34-36 Xrmj 6 A 0.017662 

37-39 Xrmj 2 A 0.010409 

40-42 Xrmjl A 0.006546 

43-45 Xrmjl9 C 0.004381 

46-48 Xrmj4 A 0.001998 

49-51 Xrmjl8 C 0.001037 

52 
#schedules 17 

Total CRR 0.4013 

A comparison between the three multiagent negotiation-based maintenance 

simulation results and the centralized optimization result is shown in Table 5-6. From the 

simulation results, we can easily find that the result of agent negotiation simulation 1 is 

exactly the same as that of our centralized optimization simulation. The reason is because, in 

this negotiation simulation, all the maintenance agents are totally rational and they also 

utilize the system-wide information of cumulative risk reduction (CRR). Thus whichever 

maintenance activity can achieve larger system accumulative risk reduction, it will be 

scheduled ahead of others. And when some of the maintenance agents deviate from totally 

rational (either selfish or unselfish as in our simulation 2 and 3), then the simulation results 

would become sub-optimal. 
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Table 5-6: A comparison between the Maintenance Simulations 

Total 

Schedules 

Schedules for 

sub-system A 

Schedules for 

sub-system B 

Schedules for 

sub-system B 

Cumulative 

Risk 

Reduction 

Negotiation 

Simulation 1 
17 6 8 3 0.4013 

Negotiation 

Simulation 2 
17 8 8 1 0.3960 

Negotiation 

Simulation 3 
17 7 5 5 0.3494 

Centralized 

Optimization 

Simulation 4 

17 6 8 3 0.4013 

Here, we can see two advantages by using the MAS negotiated decision-making. One 

is that it can actually be implemented to facilitate the decision-making among a multiplicity 

of distributed decision-makers. Different entities represented by software agents with coded 

negotiation models, can coordinate with each other to resolve problems, such as maintenance 

scheduling, once handled by a centralized organization. The rationale of this distributed 

decision-making paradigm through multiagent negotiation is not only to reflect the true 

picture of the deregulated environment, but also enable solutions in a more satisfactory 

manner to all involved parties. The other is that it is a tool to use in comparing distributed 

decision-making relative to centralized decision-making. The centralized solution is optimal 

if all relevant information is available. However, in today's restructured environment, this is 

not always the case, because either required information for decision is proprietary and not 

fully accessible, or decision-making authority is highly fragmented and need coordination 

among all entities. The paradigm of distributed decision-making through multiagent 

negotiation provides a way to achieve solutions with varying levels of cooperation and 

information among all parties. It offers different levels of centralization in decision-making, 

i e , negotiated decision-making allows simulation and study of decision quality as the 
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decision framework moves from being highly centralized (i.e., vertically integrated utilities) 

to entirely distributed (i.e., restructured power industry). 

5.8 Summary 

In this chapter, we developed and implemented an innovative multiagent system 

distributed decision-making framework, which provides the basis for displacing centralized 

optimization with inter-agent negotiation. We illustrated this framework for transmission 

maintenance scheduling. The multiagent design methodology was introduced. Different 

implementation issues of our multiagent system, including directory service, inter-agent 

communication protocol and negotiation protocol were described. Based on this generic 

multiagent platform, a multiagent system framework for integrated condition monitoring and 

maintenance scheduling system for power transformer was described. Simulations of 

resolving the maintenance-scheduling problem through multi-agent negotiations were 

presented. We conclude that multiagent negotiated decision-making provides a viable 

alternative solution procedure, which is more attractive in a deregulated environment. 

In next chapter, we summarize the major contributions of this work and pave the way 

for further research efforts in this direction. 
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G CONCLUSIONS AND FUTURE WORK 

6.) Conc/us/ons 

In this work, motivated by the need to coordinate transmission maintenance 

scheduling among a multiplicity of self-interested entities in restructured power industry, we 

have developed a distributed decision support framework based on multiagent negotiation 

systems (MANS). In the first chapter, we described the need of decision coordination among 

competing power system entities for a variety of decision-making problems, such as 

system-wide transmission maintenance scheduling. In chapter 2, literature related to this 

work was reviewed. Different transmission system maintenance practices were summarized. 

Current industry efforts regarding standardization of communication protocols and 

information integration were identified. Then concepts of intelligent software agent and 

multiagent systems as well as their attractive attributes were introduced. In chapter 3, we first 

presented an innovative risk-based transmission maintenance optimization procedure. In 

order to best enhance system reliability by performing appropriate maintenance activities, we 

need evaluate the condition of aging transmission equipment. We used power transformer as 

an example to illustrate our work. Different power transformer condition monitoring 

techniques along with available condition data were described. Various transformer failure 

modes were also identified. Based on condition monitoring information, different models for 

estimating equipment instantaneous failure probability were developed and illustrated. The 

quantification of equipment instantaneous failure probability enables the effective utilization 

of equipment condition information in related maintenance decisions. In chapter 4, we again 

motivated the need of a new paradigm for distributed decision coordination among 

competing entities in deregulated power industry. The basics of negotiation theory were 

reviewed. Two multi-agent negotiation models were described. Some issues of multiagent 

negotiation convergence and scalability were discussed. The relationship between 
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agent-based negotiations and auction systems was also identified. In chapter 5, we first 

described a four-step MAS design methodology for constructing multiagent systems for 

power system applications. Then the implementation of a multiagent negotiation system 

(MANS) was described. Based on this generic multiagent system platform, we further 

developed a multiagent system framework for facilitating the integration of condition 

monitoring information and maintenance scheduling for power transformers. Simulations of 

multiagent negotiation-based maintenance scheduling among several independent utilities 

were also provided. 

6.2 Confr/buf/ons and S/gn/ffcance of 77%/s Wort 

Some decision-making problems in today's deregulated power industry, like 

transmission maintenance scheduling, necessitate a new paradigm to build upon and 

ultimately replace the centralized decision approach, enabling optimized decisions in an 

environment of highly distributed information and a multiplicity of competing entities. This 

work offers an alternative to traditional centralized maintenance practice by developing a 

multiagent negotiation-based framework for coordination of maintenance decisions among 

independent utilities. The most significant contributions of this work are summarized in what 

follows. 

• An innovative risk-based transmission maintenance optimization procedure was 

introduced. This framework provides the ability to centrally select and schedule maintenance 

tasks so as to utilize the available financial and human resources to optimize the 

risk-reduction achieved from them within a given budget cycle. Several models for linking 

condition monitoring information to the equipment's instantaneous failure probability were 

developed. They enable quantitative evaluation of the effectiveness of maintenance activities 

in terms of system cumulative risk reduction. These models include straightforward, easily 

implemented hazard function models; and a strict, flexible Markov model as well as a 
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complementary Bayesian model. Methodologies of statistical processing, equipment 

deterioration level evaluation and time-dependent failure probability calculations were also 

described. 

• A novel framework capable of facilitating distributed decision-making through 

multiagent-based negotiation was developed. A multiagent negotiation model was developed 

and illustrated that accounts for uncertainty and enables social rationality. Some issues of 

multiagent negotiation convergence and scalability were discussed. The relationship between 

agent-based negotiations and auction systems was also identified. 

• A four-step MAS design methodology for constructing multiagent systems for 

power system applications was presented. A generic multiagent negotiation system, capable 

of inter-agent communication and distributed decision support through inter-agent 

negotiation, was implemented. 

• A multiagent system framework for facilitating the integration of condition 

monitoring information and maintenance scheduling for power transformers was developed. 

Simulations of multiagent negotiation-based maintenance scheduling among several 

independent utilities were provided. It is a viable alternative solution paradigm to the 

traditional centralized optimization approach in today's deregulated environment. 

The distributed decision-making paradigm through multiagent negotiation presented 

in this thesis has a number of explicit and implicit significance to the restructured power 

industry. Here we are not intend to enumerate all of them, but try to describe several most 

representative ones: 

« vKhoWedgg-ZeW CofMrnzmicafion CapoWzfy: Within a multiagent system, agents 

can communicate with each other using agenf commwmcafK)» kmgwage (ACLs), which 

resembles human-like speech actions more than typical symbol-level program-to-program 

communication protocols. This capability enables agents to distill useful knowledge from 

voluminous heterogeneous information sources and communicate with each other on the 
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basis of which they coordinate their actions. By enabling performance of computation where 

computing resources and data are located, and allowing for flexible communication of 

relevant results to relevant entities as needed, MAS offer significant new communication 

capabilities to power systems, which have for so long depended on various forms of 

expensive telemetry to satisfy most communication needs. 

" Distributed Data Access and Processing: Recall that in power system industry, it 

presents a great challenge to gather, analyze and integrate a wide variety of information/data 

on multiple, geographically distributed, heterogeneous and often autonomously owned 

operational hardware and software systems in support of distributed problem solving and 

decision making. The benefits offered by M AS with the distribution of multiple, more or less 

autonomous agents across a network could lead to solve this problem. Software agents may 

have different levels of intelligence, ranging from data agents and functional agents to 

decision agents (corresponding to what were termed data view, function view, and dynamics 

view in [Lind, 2001]). Special agents can be designed to extract, transform and assimilate 

relevant information from heterogeneous and proprietary data sources, such as the 

application described in [Reinoso-Castillo, 2002]. This application uses a three-layer 

architecture consisting of the physical layer, the ontological layer, and the user-interface 

layer. The physical layer allows the system to communicate with the distributed information 

sources. The ontological layer automatically bridges the syntactic and semantic mismatches 

among the heterogeneous data sources. Finally, the user interface layer enables users to 

interact with the system, define ontologies, post queries and receive answers. Because each 

agent is designed to perform a specific role, with associated knowledge and skills, distributed 

and heterogeneous information can be efficiently processed locally and utilized in a 

coordinated fashion in distributed knowledge networks [Honavar, 1998], resulting in reduced 

information processing time and network bandwidth consumption in comparison to that of 

more traditional centralized schemes in current power industry. 



www.manaraa.com

108 

" 7nfggro&zM;fy: The power industry maintains a rich plethora of power system 

software applications, developed in many different computer languages, intended for use on 

many different platforms. Extending old applications or developing new ones usually 

involves integrating legacy systems, and doing so is cumbersome and labor-intensive. Within 

MAS, this problem can be largely overcome by wrapping agent functionality, mainly the 

communication mechanism, around the existing legacy systems to provide them with highly 

flexible interoperability. 

• Scalability: Each agent can be identified as an independent entity and thus help in 

incremental growth and flexible expansion of the entire system. The advantage of scalability 

is provided as each agent can join a system, start working with other agents, or just leave a 

system it was engaged in after it has finished a plan, without affecting the overall function of 

the system. Because there may be several agents that are capable of doing the same thing, if 

one is unavailable or not properly working, another can do the job. This feature makes MAS 

highly robust and maintainable. In addition, MAS naturally facilitate the dissemination of 

new and more powerful functionality; as a new function becomes available, it is not simply 

limited to the particular self-contained system in which it is deployed but rather to the entire 

society of agents. 

- Distributed Decision Support: Design of complex systems in general, in order to be 

feasible, often requires modular design, which involves the decomposition of the overall task 

into more manageable subtasks. Multiagent system offers a natural task decomposition 

approach to problem solving through interaction among agents. This is facilitated by the 

ability of different agents to coordinate behavior through cooperation (agents have 

established and mutually agreeable objectives), negotiation (agents negotiate until agreement 

is reached as described I this thesis), or mediation (agents resolve conflicts that cannot be 

resolved by negotiation by appeal to a third, neutral agent) [Lind, 2001]. In this sense, MAS 

provides an innovative distributed decision support paradigm in contrast to the traditionally 
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centralized approaches. Each of these coordination mechanisms will certainly And ubiquitous 

applications in power systems. 

From the arguments put forth in favor of multiagent systems and distributed decision 

making through agent-based negotiations, we conclude that there are at least two distinct 

ways in which the power industry will benefit from successful implementation of this 

multi-agent negotiation framework: better decisions and better models. Better decisions may 

be expected because: (a) The ability to perform computer-evaluation of relevant issues, 

including accessing complex, distributed data, is inherent to the negotiation itself. This is in 

contrast to human-based negotiation where obtaining additional information or performing 

additional processing is typically done outside the time and space given to the negotiation 

process, (b) The negotiation speed is significantly increased. In contrast to human-based 

negotiation where negotiation speed depends on the limitations of the human negotiators, 

computer-based negotiated decisions may be reached as fast as network bandwidth and 

computer processing power allow. This not only provides for enhancing existing negotiated 

decision-making scenarios but also introducing negotiated decision-making where it was 

previously thought to be untenable. For example, networked negotiation enables 

consideration of negotiated decision making between control centers, even between 

individual generation and/or transmission companies, following outages when typically 

decision-time is quite short. 

The second way in which the power industry will benefit is that multi-agent 

negotiated decision-making offers a modeling framework that enables study of important 

power industry characteristics for which good models are not presently available. One of 

these characteristics is the level of centralization in decision-making, i.e., negotiated 

decision-making allows simulation and study of decision quality as the decision framework 

moves from being highly centralized (i.e., vertically integrated utilities) to entirely distributed 

(i.e., restructured power industry). 
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6.3 Future M/brt 

The research described in this dissertation lays out the framework of multiagent 

system as an integrated approach to complex information integration and distributed decision 

support for a lot of problems in deregulated power system environment, such as transmission 

maintenance scheduling. This work offers an alternative to traditional centralized approaches 

by coordination among agent-represented decision entities. However, before this framework 

could be fruitfully deployed in a physical system, there are still many related issues worthy of 

investigation. Some of them are discussed as follows: 

• Different kind of inter-agent coordination techniques: As described before, except 

negotiation, there are some other kind of inter-agent coordination techniques, such as 

mediation, auctions, voting and bargaining [Sandholm, 1999]. We have studied inter-agent 

negotiation mechanism, which we feel is the most appropriate coordination mechanism 

needed for a multiplicity of competing entities in deregulated power system environment. 

However, those other coordination techniques also need to be investigated, as they may be 

more suitable than negotiation in some application scenarios. 

• Multilateral inter-agent negotiations: As described in section 4.4, we have 

implemented a multiagent negotiation system capable of enabling bilateral, sequential 

inter-agent negotiations. It is desirable to do some enhancement with the software 

implementation to enabling multilateral inter-agent negotiations. The negotiation models 

developed in this dissertation are capable of multilateral inter-agent negotiations, but the 

negotiation protocol need to be somehow modified. One possible way of doing so is to adopt 

broadcasting communication as discussed in section 4.4. 

- Egwip ao/hvare age/zfj vwfA Zeammg mgc/wmzsm.?.' Learning from experiences is 

an essential ingredient in human decision-making. Integrating machine learning algorithms 

[Bui, 1996; Arai, 2000; Chajewska, 2000; Ng, 2000] within the agents' decision-making 

process enables the agents to learn the characteristics of their opponent and environment, 
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thus enables faster, more intelligent decisions, and enables the agents to exhibit more 

autonomous behavior. 

• Integration with power system databases: So far, we have obtained limited 

amount of transmission equipment condition data from the industry. We are planning to 

acquire more information, such as, different transmission equipment life history data, failure 

data, different kind of condition monitoring data, test data, maintenance records and histories. 

We will test our agent software system [Reinoso-Castillo, 2002] for facilitating distributed, 

heterogeneous data integration and distributed decision support. 

Study different kind of application scenarios in power system: In this work, we 

have investigated the application of distributed decision-making through multiagent 

negotiation in the area of transmission maintenance scheduling. There are a lot of other 

potential domains where this innovative decision support paradigm could also be fruitfully 

applied, such as: power market operation, demand (load) management, load forecasting, 

cascading outage prevention, remote device setting adjustment, system reconfiguration and 

re-dispatching, system restoration, energy system coordination. 
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Appendix A. Transformer Failure Modes and Maintenance 

Activities 

Components 
Dominant 

Failure mode(s) 
Failure cause(s) Failure effect Maintenance Activity 

Transformer oil Oil deterioration Oxidization of oil Cause corrosion of the various metals 

within the transformer 

Oil tests, oil level checking. Transformer oil Oil deterioration 

Thermal decomposition of oil Carbon formation, sludge and 

insulation deterioration 

Oil tests, oil level checking. Transformer oil Oil deterioration 

Contamination from moisture Corrosion, deterioration of insulation 

Oil tests, oil level checking. 

Conservator Loss of sealing Moisture ingress & oxidization Leakage of oil External examination for leaks 

Pressure relief 

device 

Pressure relief 

device block 

Mating surface sticks Cannot release the pressure during 

internal fault, may cause substantial 

damage to the tank 

Visual inspection 

Winding Resistance not in 

range 

Fault, wrong settings Helpful during fault investigation Winding resistance testing Winding 

Winding overheat Excessive overloading, failure 

of cooling system 
Winding resistance increase. Damage 

of winding 

Inspection of cooling system. 

Winding temp. Device test 

Winding 

Fails to transform 

voltage 

Turn to turn short, open 

winding, loose internal 

bolted/compression connection 

Upset customers. System instability. Oil analysis, vibration analysis 

Coordinating 

gaps 

Flashover Painting deteriorated by 

pollution, burned by arcing 
Shortage Gaps cleaning, painting or 

replacing 

Insulator Flashover Pollution, moisture ingress, 

aging 

insulation failure Greasing, cleaning, replacing 

Fans and pumps Malfunction Block, wrong direction, 

deterioration 

Overheat, insulation failure Test, replacement 

Neutral earthing Earthing 

malfunction 

Earthing disconnected with 

earth or resistance too large 

Induced circulating currents Check on the integrity of 

earthing 

Surge protection Malfunction Lightening Facility damage Inspection, testing 

Breather system Malfunction Block or cannot filtrate 

moisture or other contamination 
Oil deterioration, overheat Checking, testing 

Seals Loss of Sealing 

ability 

Moisture ingress leading to 

dielectric failure 
Loss of sealing ability leading to 

increased demand on, and the early 

failure of system equipment 

Inspection, monitoring, 

replacement 

Bushings Insulation failure -,oss of oil, pollution, moisture 

ingress 
Endanger personnel Visual inspection, power factor 

test, replacing 
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Appendix B. Transformer Oii Test Results 

Company: Alliant Energy 
Manufacturer: Allis-Chalmers 

Location: Marshalltown, IA 

MFG Date: 1/1/1960 
EquipNum: 10120267341 

Primary kV: 115 
Second kV: 13.2 

Phase: 3 

Sample 
Date 

Hz CO CO2 CH4 C2H2 C2H4 CzH* TDCG* 

12/15/1993 199 2053 3921 266 0 1 9 2528 

8/3/1994 601 1867 18036 279 0 5 54 2806 

10/10/1995 810 1662 30360 236 0 8 47 2763 

5/7/1996 509 1585 30859 283 0 8 51 2436 

7/14/1998 908 1233 19292 111 0 12 16 2280 

9/29/1998 2432 2396 28506 225 0 35 34 5122 

11/6/1998 0 4 24 0 0 0 0 4 

7/27/2000 249 753 20845 80 0 13 29 1124 

10/8/2001 556 746 24479 84 0 21 36 1443 

3/21/2002 200 960 30435 118 0 14 54 1346 
3/31/2003 26 690 19092 120 0 23 48 907 

11/25/2003 28 673 19062 116 0 26 49 892 

*TDCG: Total dissolved combustible gases. It does not include CO2, which is 

non-combustible. 
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